#include "../../include/capture/kms.h" #include "../../include/utils.h" #include "../../include/color_conversion.h" #include "../../include/cursor.h" #include "../../kms/client/kms_client.h" #include #include #include #include #include #include #include #include #include #include #define HDMI_STATIC_METADATA_TYPE1 0 #define HDMI_EOTF_SMPTE_ST2084 2 #define MAX_CONNECTOR_IDS 32 typedef struct { uint32_t connector_ids[MAX_CONNECTOR_IDS]; int num_connector_ids; } MonitorId; typedef struct { gsr_capture_kms_params params; gsr_kms_client kms_client; gsr_kms_response kms_response; vec2i capture_pos; vec2i capture_size; MonitorId monitor_id; gsr_monitor_rotation monitor_rotation; unsigned int input_texture_id; unsigned int external_input_texture_id; unsigned int cursor_texture_id; bool no_modifiers_fallback; bool external_texture_fallback; struct hdr_output_metadata hdr_metadata; bool hdr_metadata_set; bool is_x11; gsr_cursor x11_cursor; AVCodecContext *video_codec_context; bool performance_error_shown; bool fast_path_failed; //int drm_fd; //uint64_t prev_sequence; //bool damaged; vec2i prev_target_pos; vec2i prev_plane_size; } gsr_capture_kms; static void gsr_capture_kms_cleanup_kms_fds(gsr_capture_kms *self) { for(int i = 0; i < self->kms_response.num_items; ++i) { for(int j = 0; j < self->kms_response.items[i].num_dma_bufs; ++j) { gsr_kms_response_dma_buf *dma_buf = &self->kms_response.items[i].dma_buf[j]; if(dma_buf->fd > 0) { close(dma_buf->fd); dma_buf->fd = -1; } } self->kms_response.items[i].num_dma_bufs = 0; } self->kms_response.num_items = 0; } static void gsr_capture_kms_stop(gsr_capture_kms *self) { if(self->input_texture_id) { self->params.egl->glDeleteTextures(1, &self->input_texture_id); self->input_texture_id = 0; } if(self->external_input_texture_id) { self->params.egl->glDeleteTextures(1, &self->external_input_texture_id); self->external_input_texture_id = 0; } if(self->cursor_texture_id) { self->params.egl->glDeleteTextures(1, &self->cursor_texture_id); self->cursor_texture_id = 0; } // if(self->drm_fd > 0) { // close(self->drm_fd); // self->drm_fd = -1; // } gsr_capture_kms_cleanup_kms_fds(self); gsr_kms_client_deinit(&self->kms_client); gsr_cursor_deinit(&self->x11_cursor); } static int max_int(int a, int b) { return a > b ? a : b; } static void gsr_capture_kms_create_input_texture_ids(gsr_capture_kms *self) { self->params.egl->glGenTextures(1, &self->input_texture_id); self->params.egl->glBindTexture(GL_TEXTURE_2D, self->input_texture_id); self->params.egl->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); self->params.egl->glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); self->params.egl->glBindTexture(GL_TEXTURE_2D, 0); self->params.egl->glGenTextures(1, &self->external_input_texture_id); self->params.egl->glBindTexture(GL_TEXTURE_EXTERNAL_OES, self->external_input_texture_id); self->params.egl->glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MIN_FILTER, GL_LINEAR); self->params.egl->glTexParameteri(GL_TEXTURE_EXTERNAL_OES, GL_TEXTURE_MAG_FILTER, GL_LINEAR); self->params.egl->glBindTexture(GL_TEXTURE_EXTERNAL_OES, 0); const bool cursor_texture_id_is_external = self->params.egl->gpu_info.vendor == GSR_GPU_VENDOR_NVIDIA; const int cursor_texture_id_target = cursor_texture_id_is_external ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D; self->params.egl->glGenTextures(1, &self->cursor_texture_id); self->params.egl->glBindTexture(cursor_texture_id_target, self->cursor_texture_id); self->params.egl->glTexParameteri(cursor_texture_id_target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(cursor_texture_id_target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); self->params.egl->glTexParameteri(cursor_texture_id_target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); self->params.egl->glTexParameteri(cursor_texture_id_target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); self->params.egl->glBindTexture(cursor_texture_id_target, 0); } /* TODO: On monitor reconfiguration, find monitor x, y, width and height again. Do the same for nvfbc. */ typedef struct { MonitorId *monitor_id; const char *monitor_to_capture; int monitor_to_capture_len; int num_monitors; } MonitorCallbackUserdata; static void monitor_callback(const gsr_monitor *monitor, void *userdata) { MonitorCallbackUserdata *monitor_callback_userdata = userdata; ++monitor_callback_userdata->num_monitors; if(monitor_callback_userdata->monitor_to_capture_len != monitor->name_len || memcmp(monitor_callback_userdata->monitor_to_capture, monitor->name, monitor->name_len) != 0) return; if(monitor_callback_userdata->monitor_id->num_connector_ids < MAX_CONNECTOR_IDS) { monitor_callback_userdata->monitor_id->connector_ids[monitor_callback_userdata->monitor_id->num_connector_ids] = monitor->connector_id; ++monitor_callback_userdata->monitor_id->num_connector_ids; } if(monitor_callback_userdata->monitor_id->num_connector_ids == MAX_CONNECTOR_IDS) fprintf(stderr, "gsr warning: reached max connector ids\n"); } static vec2i rotate_capture_size_if_rotated(gsr_capture_kms *self, vec2i capture_size) { if(self->monitor_rotation == GSR_MONITOR_ROT_90 || self->monitor_rotation == GSR_MONITOR_ROT_270) { int tmp_x = capture_size.x; capture_size.x = capture_size.y; capture_size.y = tmp_x; } return capture_size; } static int gsr_capture_kms_start(gsr_capture *cap, AVCodecContext *video_codec_context, AVFrame *frame) { gsr_capture_kms *self = cap->priv; gsr_capture_kms_create_input_texture_ids(self); gsr_monitor monitor; self->monitor_id.num_connector_ids = 0; int kms_init_res = gsr_kms_client_init(&self->kms_client, self->params.egl->card_path); if(kms_init_res != 0) return kms_init_res; self->is_x11 = gsr_egl_get_display_server(self->params.egl) == GSR_DISPLAY_SERVER_X11; const gsr_connection_type connection_type = self->is_x11 ? GSR_CONNECTION_X11 : GSR_CONNECTION_DRM; if(self->is_x11) gsr_cursor_init(&self->x11_cursor, self->params.egl, self->params.egl->x11.dpy); MonitorCallbackUserdata monitor_callback_userdata = { &self->monitor_id, self->params.display_to_capture, strlen(self->params.display_to_capture), 0, }; for_each_active_monitor_output(self->params.egl, connection_type, monitor_callback, &monitor_callback_userdata); if(!get_monitor_by_name(self->params.egl, connection_type, self->params.display_to_capture, &monitor)) { fprintf(stderr, "gsr error: gsr_capture_kms_start: failed to find monitor by name \"%s\"\n", self->params.display_to_capture); gsr_capture_kms_stop(self); return -1; } monitor.name = self->params.display_to_capture; self->monitor_rotation = drm_monitor_get_display_server_rotation(self->params.egl, &monitor); self->capture_pos = monitor.pos; /* Monitor size is already rotated on x11 when the monitor is rotated, no need to apply it ourselves */ if(self->is_x11) self->capture_size = monitor.size; else self->capture_size = rotate_capture_size_if_rotated(self, monitor.size); /* Disable vsync */ self->params.egl->eglSwapInterval(self->params.egl->egl_display, 0); if(self->params.output_resolution.x == 0 && self->params.output_resolution.y == 0) { self->params.output_resolution = self->capture_size; video_codec_context->width = FFALIGN(self->capture_size.x, 2); video_codec_context->height = FFALIGN(self->capture_size.y, 2); } else { self->params.output_resolution = scale_keep_aspect_ratio(self->capture_size, self->params.output_resolution); video_codec_context->width = FFALIGN(self->params.output_resolution.x, 2); video_codec_context->height = FFALIGN(self->params.output_resolution.y, 2); } frame->width = video_codec_context->width; frame->height = video_codec_context->height; self->video_codec_context = video_codec_context; return 0; } static void gsr_capture_kms_on_event(gsr_capture *cap, gsr_egl *egl) { gsr_capture_kms *self = cap->priv; if(!self->is_x11) return; XEvent *xev = gsr_egl_get_event_data(egl); gsr_cursor_on_event(&self->x11_cursor, xev); } // TODO: This is disabled for now because we want to be able to record at a framerate higher than the monitor framerate // static void gsr_capture_kms_tick(gsr_capture *cap) { // gsr_capture_kms *self = cap->priv; // if(self->drm_fd <= 0) // self->drm_fd = open(self->params.egl->card_path, O_RDONLY); // if(self->drm_fd <= 0) // return; // uint64_t sequence = 0; // uint64_t ns = 0; // if(drmCrtcGetSequence(self->drm_fd, 79, &sequence, &ns) != 0) // return; // if(sequence != self->prev_sequence) { // self->prev_sequence = sequence; // self->damaged = true; // } // } static float monitor_rotation_to_radians(gsr_monitor_rotation rot) { switch(rot) { case GSR_MONITOR_ROT_0: return 0.0f; case GSR_MONITOR_ROT_90: return M_PI_2; case GSR_MONITOR_ROT_180: return M_PI; case GSR_MONITOR_ROT_270: return M_PI + M_PI_2; } return 0.0f; } static gsr_kms_response_item* find_drm_by_connector_id(gsr_kms_response *kms_response, uint32_t connector_id) { for(int i = 0; i < kms_response->num_items; ++i) { if(kms_response->items[i].connector_id == connector_id && !kms_response->items[i].is_cursor) return &kms_response->items[i]; } return NULL; } static gsr_kms_response_item* find_largest_drm(gsr_kms_response *kms_response) { if(kms_response->num_items == 0) return NULL; int64_t largest_size = 0; gsr_kms_response_item *largest_drm = &kms_response->items[0]; for(int i = 0; i < kms_response->num_items; ++i) { const int64_t size = (int64_t)kms_response->items[i].width * (int64_t)kms_response->items[i].height; if(size > largest_size && !kms_response->items[i].is_cursor) { largest_size = size; largest_drm = &kms_response->items[i]; } } return largest_drm; } static gsr_kms_response_item* find_cursor_drm(gsr_kms_response *kms_response, uint32_t connector_id) { gsr_kms_response_item *cursor_drm = NULL; for(int i = 0; i < kms_response->num_items; ++i) { if(kms_response->items[i].is_cursor) { cursor_drm = &kms_response->items[i]; if(kms_response->items[i].connector_id == connector_id) break; } } return cursor_drm; } static bool hdr_metadata_is_supported_format(const struct hdr_output_metadata *hdr_metadata) { return hdr_metadata->metadata_type == HDMI_STATIC_METADATA_TYPE1 && hdr_metadata->hdmi_metadata_type1.metadata_type == HDMI_STATIC_METADATA_TYPE1 && hdr_metadata->hdmi_metadata_type1.eotf == HDMI_EOTF_SMPTE_ST2084; } // TODO: Check if this hdr data can be changed after the call to av_packet_side_data_add static void gsr_kms_set_hdr_metadata(gsr_capture_kms *self, const gsr_kms_response_item *drm_fd) { if(self->hdr_metadata_set) return; self->hdr_metadata_set = true; self->hdr_metadata = drm_fd->hdr_metadata; } static vec2i swap_vec2i(vec2i value) { int tmp = value.x; value.x = value.y; value.y = tmp; return value; } static EGLImage gsr_capture_kms_create_egl_image(gsr_capture_kms *self, const gsr_kms_response_item *drm_fd, const int *fds, const uint32_t *offsets, const uint32_t *pitches, const uint64_t *modifiers, bool use_modifiers) { intptr_t img_attr[44]; setup_dma_buf_attrs(img_attr, drm_fd->pixel_format, drm_fd->width, drm_fd->height, fds, offsets, pitches, modifiers, drm_fd->num_dma_bufs, use_modifiers); while(self->params.egl->eglGetError() != EGL_SUCCESS){} EGLImage image = self->params.egl->eglCreateImage(self->params.egl->egl_display, 0, EGL_LINUX_DMA_BUF_EXT, NULL, img_attr); if(!image || self->params.egl->eglGetError() != EGL_SUCCESS) { if(image) self->params.egl->eglDestroyImage(self->params.egl->egl_display, image); return NULL; } return image; } static EGLImage gsr_capture_kms_create_egl_image_with_fallback(gsr_capture_kms *self, const gsr_kms_response_item *drm_fd) { // TODO: This causes a crash sometimes on steam deck, why? is it a driver bug? a vaapi pure version doesn't cause a crash. // Even ffmpeg kmsgrab causes this crash. The error is: // amdgpu: Failed to allocate a buffer: // amdgpu: size : 28508160 bytes // amdgpu: alignment : 2097152 bytes // amdgpu: domains : 4 // amdgpu: flags : 4 // amdgpu: Failed to allocate a buffer: // amdgpu: size : 28508160 bytes // amdgpu: alignment : 2097152 bytes // amdgpu: domains : 4 // amdgpu: flags : 4 // EE ../jupiter-mesa/src/gallium/drivers/radeonsi/radeon_vcn_enc.c:516 radeon_create_encoder UVD - Can't create CPB buffer. // [hevc_vaapi @ 0x55ea72b09840] Failed to upload encode parameters: 2 (resource allocation failed). // [hevc_vaapi @ 0x55ea72b09840] Encode failed: -5. // Error: avcodec_send_frame failed, error: Input/output error // Assertion pic->display_order == pic->encode_order failed at libavcodec/vaapi_encode_h265.c:765 // kms server info: kms client shutdown, shutting down the server int fds[GSR_KMS_MAX_DMA_BUFS]; uint32_t offsets[GSR_KMS_MAX_DMA_BUFS]; uint32_t pitches[GSR_KMS_MAX_DMA_BUFS]; uint64_t modifiers[GSR_KMS_MAX_DMA_BUFS]; for(int i = 0; i < drm_fd->num_dma_bufs; ++i) { fds[i] = drm_fd->dma_buf[i].fd; offsets[i] = drm_fd->dma_buf[i].offset; pitches[i] = drm_fd->dma_buf[i].pitch; modifiers[i] = drm_fd->modifier; } EGLImage image = NULL; if(self->no_modifiers_fallback) { image = gsr_capture_kms_create_egl_image(self, drm_fd, fds, offsets, pitches, modifiers, false); } else { image = gsr_capture_kms_create_egl_image(self, drm_fd, fds, offsets, pitches, modifiers, true); if(!image) { fprintf(stderr, "gsr error: gsr_capture_kms_create_egl_image_with_fallback: failed to create egl image with modifiers, trying without modifiers\n"); self->no_modifiers_fallback = true; image = gsr_capture_kms_create_egl_image(self, drm_fd, fds, offsets, pitches, modifiers, false); } } return image; } static bool gsr_capture_kms_bind_image_to_texture(gsr_capture_kms *self, EGLImage image, unsigned int texture_id, bool external_texture) { const int texture_target = external_texture ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D; while(self->params.egl->glGetError() != 0){} self->params.egl->glBindTexture(texture_target, texture_id); self->params.egl->glEGLImageTargetTexture2DOES(texture_target, image); const bool success = self->params.egl->glGetError() == 0; self->params.egl->glBindTexture(texture_target, 0); return success; } static void gsr_capture_kms_bind_image_to_input_texture_with_fallback(gsr_capture_kms *self, EGLImage image) { if(self->external_texture_fallback) { gsr_capture_kms_bind_image_to_texture(self, image, self->external_input_texture_id, true); } else { if(!gsr_capture_kms_bind_image_to_texture(self, image, self->input_texture_id, false)) { fprintf(stderr, "gsr error: gsr_capture_kms_capture: failed to bind image to texture, trying with external texture\n"); self->external_texture_fallback = true; gsr_capture_kms_bind_image_to_texture(self, image, self->external_input_texture_id, true); } } } static gsr_kms_response_item* find_monitor_drm(gsr_capture_kms *self, bool *capture_is_combined_plane) { *capture_is_combined_plane = false; gsr_kms_response_item *drm_fd = NULL; for(int i = 0; i < self->monitor_id.num_connector_ids; ++i) { drm_fd = find_drm_by_connector_id(&self->kms_response, self->monitor_id.connector_ids[i]); if(drm_fd) break; } // Will never happen on wayland unless the target monitor has been disconnected if(!drm_fd) { drm_fd = find_largest_drm(&self->kms_response); *capture_is_combined_plane = true; } return drm_fd; } static gsr_kms_response_item* find_cursor_drm_if_on_monitor(gsr_capture_kms *self, uint32_t monitor_connector_id, bool capture_is_combined_plane) { gsr_kms_response_item *cursor_drm_fd = find_cursor_drm(&self->kms_response, monitor_connector_id); if(!capture_is_combined_plane && cursor_drm_fd && cursor_drm_fd->connector_id != monitor_connector_id) cursor_drm_fd = NULL; return cursor_drm_fd; } static void render_drm_cursor(gsr_capture_kms *self, gsr_color_conversion *color_conversion, const gsr_kms_response_item *cursor_drm_fd, vec2i target_pos, float texture_rotation, vec2i output_size) { const vec2d scale = { self->capture_size.x == 0 ? 0 : (double)output_size.x / (double)self->capture_size.x, self->capture_size.y == 0 ? 0 : (double)output_size.y / (double)self->capture_size.y }; const bool cursor_texture_id_is_external = self->params.egl->gpu_info.vendor == GSR_GPU_VENDOR_NVIDIA; const vec2i cursor_size = {cursor_drm_fd->width, cursor_drm_fd->height}; vec2i cursor_pos = {cursor_drm_fd->x, cursor_drm_fd->y}; switch(self->monitor_rotation) { case GSR_MONITOR_ROT_0: break; case GSR_MONITOR_ROT_90: cursor_pos = swap_vec2i(cursor_pos); cursor_pos.x = self->capture_size.x - cursor_pos.x; // TODO: Remove this horrible hack cursor_pos.x -= cursor_size.x; break; case GSR_MONITOR_ROT_180: cursor_pos.x = self->capture_size.x - cursor_pos.x; cursor_pos.y = self->capture_size.y - cursor_pos.y; // TODO: Remove this horrible hack cursor_pos.x -= cursor_size.x; cursor_pos.y -= cursor_size.y; break; case GSR_MONITOR_ROT_270: cursor_pos = swap_vec2i(cursor_pos); cursor_pos.y = self->capture_size.y - cursor_pos.y; // TODO: Remove this horrible hack cursor_pos.y -= cursor_size.y; break; } cursor_pos.x *= scale.x; cursor_pos.y *= scale.y; cursor_pos.x += target_pos.x; cursor_pos.y += target_pos.y; int fds[GSR_KMS_MAX_DMA_BUFS]; uint32_t offsets[GSR_KMS_MAX_DMA_BUFS]; uint32_t pitches[GSR_KMS_MAX_DMA_BUFS]; uint64_t modifiers[GSR_KMS_MAX_DMA_BUFS]; for(int i = 0; i < cursor_drm_fd->num_dma_bufs; ++i) { fds[i] = cursor_drm_fd->dma_buf[i].fd; offsets[i] = cursor_drm_fd->dma_buf[i].offset; pitches[i] = cursor_drm_fd->dma_buf[i].pitch; modifiers[i] = cursor_drm_fd->modifier; } intptr_t img_attr_cursor[44]; setup_dma_buf_attrs(img_attr_cursor, cursor_drm_fd->pixel_format, cursor_drm_fd->width, cursor_drm_fd->height, fds, offsets, pitches, modifiers, cursor_drm_fd->num_dma_bufs, true); EGLImage cursor_image = self->params.egl->eglCreateImage(self->params.egl->egl_display, 0, EGL_LINUX_DMA_BUF_EXT, NULL, img_attr_cursor); const int target = cursor_texture_id_is_external ? GL_TEXTURE_EXTERNAL_OES : GL_TEXTURE_2D; self->params.egl->glBindTexture(target, self->cursor_texture_id); self->params.egl->glEGLImageTargetTexture2DOES(target, cursor_image); self->params.egl->glBindTexture(target, 0); if(cursor_image) self->params.egl->eglDestroyImage(self->params.egl->egl_display, cursor_image); self->params.egl->glEnable(GL_SCISSOR_TEST); self->params.egl->glScissor(target_pos.x, target_pos.y, output_size.x, output_size.y); gsr_color_conversion_draw(color_conversion, self->cursor_texture_id, cursor_pos, (vec2i){cursor_size.x * scale.x, cursor_size.y * scale.y}, (vec2i){0, 0}, cursor_size, texture_rotation, cursor_texture_id_is_external); self->params.egl->glDisable(GL_SCISSOR_TEST); } static void render_x11_cursor(gsr_capture_kms *self, gsr_color_conversion *color_conversion, vec2i capture_pos, vec2i target_pos, vec2i output_size) { if(!self->x11_cursor.visible) return; const vec2d scale = { self->capture_size.x == 0 ? 0 : (double)output_size.x / (double)self->capture_size.x, self->capture_size.y == 0 ? 0 : (double)output_size.y / (double)self->capture_size.y }; gsr_cursor_tick(&self->x11_cursor, DefaultRootWindow(self->params.egl->x11.dpy)); const vec2i cursor_pos = { target_pos.x + (self->x11_cursor.position.x - self->x11_cursor.hotspot.x) * scale.x - capture_pos.x, target_pos.y + (self->x11_cursor.position.y - self->x11_cursor.hotspot.y) * scale.y - capture_pos.y }; self->params.egl->glEnable(GL_SCISSOR_TEST); self->params.egl->glScissor(target_pos.x, target_pos.y, output_size.x, output_size.y); gsr_color_conversion_draw(color_conversion, self->x11_cursor.texture_id, cursor_pos, (vec2i){self->x11_cursor.size.x * scale.x, self->x11_cursor.size.y * scale.y}, (vec2i){0, 0}, self->x11_cursor.size, 0.0f, false); self->params.egl->glDisable(GL_SCISSOR_TEST); } static void gsr_capture_kms_update_capture_size_change(gsr_capture_kms *self, gsr_color_conversion *color_conversion, vec2i target_pos, const gsr_kms_response_item *drm_fd) { if(target_pos.x != self->prev_target_pos.x || target_pos.y != self->prev_target_pos.y || drm_fd->src_w != self->prev_plane_size.x || drm_fd->src_h != self->prev_plane_size.y) { self->prev_target_pos = target_pos; self->prev_plane_size = self->capture_size; gsr_color_conversion_clear(color_conversion); } } static int gsr_capture_kms_capture(gsr_capture *cap, AVFrame *frame, gsr_color_conversion *color_conversion) { gsr_capture_kms *self = cap->priv; gsr_capture_kms_cleanup_kms_fds(self); if(gsr_kms_client_get_kms(&self->kms_client, &self->kms_response) != 0) { fprintf(stderr, "gsr error: gsr_capture_kms_capture: failed to get kms, error: %d (%s)\n", self->kms_response.result, self->kms_response.err_msg); return -1; } if(self->kms_response.num_items == 0) { static bool error_shown = false; if(!error_shown) { error_shown = true; fprintf(stderr, "gsr error: no drm found, capture will fail\n"); } return -1; } bool capture_is_combined_plane = false; const gsr_kms_response_item *drm_fd = find_monitor_drm(self, &capture_is_combined_plane); if(!drm_fd) { gsr_capture_kms_cleanup_kms_fds(self); return -1; } if(drm_fd->has_hdr_metadata && self->params.hdr && hdr_metadata_is_supported_format(&drm_fd->hdr_metadata)) gsr_kms_set_hdr_metadata(self, drm_fd); if(!self->performance_error_shown && self->monitor_rotation != GSR_MONITOR_ROT_0 && video_codec_context_is_vaapi(self->video_codec_context) && self->params.egl->gpu_info.vendor == GSR_GPU_VENDOR_AMD) { self->performance_error_shown = true; fprintf(stderr,"gsr warning: gsr_capture_kms_capture: the monitor you are recording is rotated, composition will have to be used." " If you are experience performance problems in the video then record a single window on X11 or use portal capture option instead\n"); } const bool is_scaled = self->params.output_resolution.x > 0 && self->params.output_resolution.y > 0; vec2i output_size = is_scaled ? self->params.output_resolution : self->capture_size; output_size = scale_keep_aspect_ratio(self->capture_size, output_size); const float texture_rotation = monitor_rotation_to_radians(self->monitor_rotation); const vec2i target_pos = { max_int(0, frame->width / 2 - output_size.x / 2), max_int(0, frame->height / 2 - output_size.y / 2) }; self->capture_size = rotate_capture_size_if_rotated(self, (vec2i){ drm_fd->src_w, drm_fd->src_h }); gsr_capture_kms_update_capture_size_change(self, color_conversion, target_pos, drm_fd); vec2i capture_pos = self->capture_pos; if(!capture_is_combined_plane) capture_pos = (vec2i){drm_fd->x, drm_fd->y}; self->params.egl->glFlush(); self->params.egl->glFinish(); /* Fast opengl free path */ if(!self->fast_path_failed && self->monitor_rotation == GSR_MONITOR_ROT_0 && video_codec_context_is_vaapi(self->video_codec_context) && self->params.egl->gpu_info.vendor == GSR_GPU_VENDOR_AMD) { int fds[4]; uint32_t offsets[4]; uint32_t pitches[4]; uint64_t modifiers[4]; for(int i = 0; i < drm_fd->num_dma_bufs; ++i) { fds[i] = drm_fd->dma_buf[i].fd; offsets[i] = drm_fd->dma_buf[i].offset; pitches[i] = drm_fd->dma_buf[i].pitch; modifiers[i] = drm_fd->modifier; } if(!vaapi_copy_drm_planes_to_video_surface(self->video_codec_context, frame, (vec2i){capture_pos.x, capture_pos.y}, self->capture_size, target_pos, output_size, drm_fd->pixel_format, (vec2i){drm_fd->width, drm_fd->height}, fds, offsets, pitches, modifiers, drm_fd->num_dma_bufs)) { fprintf(stderr, "gsr error: gsr_capture_kms_capture: vaapi_copy_drm_planes_to_video_surface failed, falling back to opengl copy. Please report this as an issue at https://github.com/dec05eba/gpu-screen-recorder-issues\n"); self->fast_path_failed = true; } } else { self->fast_path_failed = true; } if(self->fast_path_failed) { EGLImage image = gsr_capture_kms_create_egl_image_with_fallback(self, drm_fd); if(image) { gsr_capture_kms_bind_image_to_input_texture_with_fallback(self, image); self->params.egl->eglDestroyImage(self->params.egl->egl_display, image); } gsr_color_conversion_draw(color_conversion, self->external_texture_fallback ? self->external_input_texture_id : self->input_texture_id, target_pos, output_size, capture_pos, self->capture_size, texture_rotation, self->external_texture_fallback); } if(self->params.record_cursor) { gsr_kms_response_item *cursor_drm_fd = find_cursor_drm_if_on_monitor(self, drm_fd->connector_id, capture_is_combined_plane); // The cursor is handled by x11 on x11 instead of using the cursor drm plane because on prime systems with a dedicated nvidia gpu // the cursor plane is not available when the cursor is on the monitor controlled by the nvidia device. if(self->is_x11) { const vec2i cursor_monitor_offset = self->capture_pos; render_x11_cursor(self, color_conversion, cursor_monitor_offset, target_pos, output_size); } else if(cursor_drm_fd) { render_drm_cursor(self, color_conversion, cursor_drm_fd, target_pos, texture_rotation, output_size); } } self->params.egl->glFlush(); self->params.egl->glFinish(); gsr_capture_kms_cleanup_kms_fds(self); return 0; } static bool gsr_capture_kms_should_stop(gsr_capture *cap, bool *err) { (void)cap; if(err) *err = false; return false; } static gsr_source_color gsr_capture_kms_get_source_color(gsr_capture *cap) { (void)cap; return GSR_SOURCE_COLOR_RGB; } static bool gsr_capture_kms_uses_external_image(gsr_capture *cap) { (void)cap; return true; } static bool gsr_capture_kms_set_hdr_metadata(gsr_capture *cap, AVMasteringDisplayMetadata *mastering_display_metadata, AVContentLightMetadata *light_metadata) { gsr_capture_kms *self = cap->priv; if(!self->hdr_metadata_set) return false; light_metadata->MaxCLL = self->hdr_metadata.hdmi_metadata_type1.max_cll; light_metadata->MaxFALL = self->hdr_metadata.hdmi_metadata_type1.max_fall; for(int i = 0; i < 3; ++i) { mastering_display_metadata->display_primaries[i][0] = av_make_q(self->hdr_metadata.hdmi_metadata_type1.display_primaries[i].x, 50000); mastering_display_metadata->display_primaries[i][1] = av_make_q(self->hdr_metadata.hdmi_metadata_type1.display_primaries[i].y, 50000); } mastering_display_metadata->white_point[0] = av_make_q(self->hdr_metadata.hdmi_metadata_type1.white_point.x, 50000); mastering_display_metadata->white_point[1] = av_make_q(self->hdr_metadata.hdmi_metadata_type1.white_point.y, 50000); mastering_display_metadata->min_luminance = av_make_q(self->hdr_metadata.hdmi_metadata_type1.min_display_mastering_luminance, 10000); mastering_display_metadata->max_luminance = av_make_q(self->hdr_metadata.hdmi_metadata_type1.max_display_mastering_luminance, 1); mastering_display_metadata->has_primaries = mastering_display_metadata->display_primaries[0][0].num > 0; mastering_display_metadata->has_luminance = mastering_display_metadata->max_luminance.num > 0; return true; } // static bool gsr_capture_kms_is_damaged(gsr_capture *cap) { // gsr_capture_kms *self = cap->priv; // return self->damaged; // } // static void gsr_capture_kms_clear_damage(gsr_capture *cap) { // gsr_capture_kms *self = cap->priv; // self->damaged = false; // } static void gsr_capture_kms_destroy(gsr_capture *cap, AVCodecContext *video_codec_context) { (void)video_codec_context; gsr_capture_kms *self = cap->priv; if(cap->priv) { gsr_capture_kms_stop(self); free((void*)self->params.display_to_capture); self->params.display_to_capture = NULL; free(cap->priv); cap->priv = NULL; } free(cap); } gsr_capture* gsr_capture_kms_create(const gsr_capture_kms_params *params) { if(!params) { fprintf(stderr, "gsr error: gsr_capture_kms_create params is NULL\n"); return NULL; } gsr_capture *cap = calloc(1, sizeof(gsr_capture)); if(!cap) return NULL; gsr_capture_kms *cap_kms = calloc(1, sizeof(gsr_capture_kms)); if(!cap_kms) { free(cap); return NULL; } const char *display_to_capture = strdup(params->display_to_capture); if(!display_to_capture) { free(cap); free(cap_kms); return NULL; } cap_kms->params = *params; cap_kms->params.display_to_capture = display_to_capture; *cap = (gsr_capture) { .start = gsr_capture_kms_start, .on_event = gsr_capture_kms_on_event, //.tick = gsr_capture_kms_tick, .should_stop = gsr_capture_kms_should_stop, .capture = gsr_capture_kms_capture, .get_source_color = gsr_capture_kms_get_source_color, .uses_external_image = gsr_capture_kms_uses_external_image, .set_hdr_metadata = gsr_capture_kms_set_hdr_metadata, //.is_damaged = gsr_capture_kms_is_damaged, //.clear_damage = gsr_capture_kms_clear_damage, .destroy = gsr_capture_kms_destroy, .priv = cap_kms }; return cap; }