diff options
author | Richard van der Hoff <richard@matrix.org> | 2016-09-22 13:32:03 +0100 |
---|---|---|
committer | Richard van der Hoff <richard@matrix.org> | 2016-09-22 13:32:03 +0100 |
commit | fc6688c4c841c45dd1057e50d91b4e858def9540 (patch) | |
tree | 91c1d28170047b261ab65bbfffa006d2cd390585 /docs | |
parent | 182eccc624b8f520c9815f0441a64313c218b777 (diff) |
megolm.rst: review feedback
Split ratchet algorithm out to a separate section.
Also clean up some phrasing and correct a typo or two.
Diffstat (limited to 'docs')
-rw-r--r-- | docs/megolm.rst | 140 |
1 files changed, 79 insertions, 61 deletions
diff --git a/docs/megolm.rst b/docs/megolm.rst index 4043357..a103e97 100644 --- a/docs/megolm.rst +++ b/docs/megolm.rst @@ -3,6 +3,8 @@ Megolm group ratchet An AES-based cryptographic ratchet intended for group communications. +.. contents:: + Background ---------- @@ -18,13 +20,12 @@ Overview -------- Each participant in a conversation uses their own session, which consists of a -ratchet, and an `Ed25519`_ keypair. +ratchet and an `Ed25519`_ keypair. -Secrecy is provided by the ratchet, which can be wound forwards, via hash -functions, but not backwards, and is used to derive a distinct message key -for each message. +Secrecy is provided by the ratchet, which can be wound forwards but not +backwards, and is used to derive a distinct message key for each message. -Authenticity is provided via the Ed25519 key. +Authenticity is provided via Ed25519 signatures. The value of the ratchet, and the public part of the Ed25519 key, are shared with other participants in the conversation via secure peer-to-peer @@ -32,10 +33,68 @@ channels. Provided that peer-to-peer channel provides authenticity of the messages to the participants and deniability of the messages to third parties, the Megolm session will inherit those properties. -The Megolm algorithm --------------------- +The Megolm ratchet algorithm +---------------------------- + +The Megolm ratchet :math:`R_i` consists of four parts, :math:`R_{i,j}` for +:math:`j \in {0,1,2,3}`. The length of each part depends on the hash function +in use (256 bits for this version of Megolm). + +The ratchet is initialised with cryptographically-secure random data, and +advanced as follows: + +.. math:: + \begin{align} + R_{i,0} &= + \begin{cases} + H_0\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\ + R_{i-1,0} &\text{otherwise} + \end{cases}\\ + R_{i,1} &= + \begin{cases} + H_1\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\ + H_1\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\ + R_{i-1,1} &\text{otherwise} + \end{cases}\\ + R_{i,2} &= + \begin{cases} + H_2\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\ + H_2\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\ + H_2\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\ + R_{i-1,2} &\text{otherwise} + \end{cases}\\ + R_{i,3} &= + \begin{cases} + H_3\left(R_{2^24(n-1),0}\right) &\text{if }\exists n | i = 2^24n\\ + H_3\left(R_{2^16(m-1),1}\right) &\text{if }\exists m | i = 2^16m\\ + H_3\left(R_{2^8(p-1),2}\right) &\text{if }\exists p | i = 2^8p\\ + H_3\left(R_{i-1,3}\right) &\text{otherwise} + \end{cases} + \end{align} -Initial setup +where :math:`H_0`, :math:`H_1`, :math:`H_2`, and :math:`H_3` are different hash +functions. In summary: every :math:`2^8` iterations, :math:`R_{i,3}` is +reseeded from :math:`R_{i,2}`. Every :math:`2^16` iterations, :math:`R_{i,2}` +and :math:`R_{i,3}` are reseeded from :math:`R_{i,1}`. Every :math:`2^24` +iterations, :math:`R_{i,1}`, :math:`R_{i,2}` and :math:`R_{i,3}` are reseeded +from :math:`R_{i,0}`. + +The complete ratchet value, :math:`R_{i}`, is hashed to generate the keys used +to encrypt each mesage. This scheme allows the ratchet to be advanced an +arbitrary amount forwards while needing at most 1023 hash computations. A +client can decrypt chat history onwards from the earliest value of the ratchet +it is aware of, but cannot decrypt history from before that point without +reversing the hash function. + +This allows a participant to share its ability to decrypt chat history with +another from a point in the conversation onwards by giving a copy of the +ratchet at that point in the conversation. + + +The Megolm protocol +------------------- + +Session setup ~~~~~~~~~~~~~ Each participant in a conversation generates their own Megolm session. A @@ -66,9 +125,9 @@ copy of the counter, ratchet, and public key. Message encryption ~~~~~~~~~~~~~~~~~~ -Megolm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding for and HMAC-SHA-256_ -(truncated to 64 bits). The 256 bit AES key, 256 bit HMAC key, and 128 bit AES -IV are derived from the megolm ratchet :math:`R_i`: +This version of Megolm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding and +HMAC-SHA-256_ (truncated to 64 bits). The 256 bit AES key, 256 bit HMAC key, +and 128 bit AES IV are derived from the megolm ratchet :math:`R_i`: .. math:: @@ -104,59 +163,18 @@ Advancing the ratchet ~~~~~~~~~~~~~~~~~~~~~ After each message is encrypted, the ratchet is advanced. This is done as -follows: +described in `The Megolm ratchet algorithm`_, using the following definitions: .. math:: \begin{align} - R_{i,0} &= - \begin{cases} - HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x00"}\right) - &\text{if }\exists n | i = 2^24n\\ - R_{i-1,0} &\text{otherwise} - \end{cases}\\ - R_{i,1} &= - \begin{cases} - HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x01"}\right) - &\text{if }\exists n | i = 2^24n\\ - HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x01"}\right) - &\text{if }\exists m | i = 2^16m\\ - R_{i-1,1} &\text{otherwise} - \end{cases}\\ - R_{i,2} &= - \begin{cases} - HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x02"}\right) - &\text{if }\exists n | i = 2^24n\\ - HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x02"}\right) - &\text{if }\exists m | i = 2^16m\\ - HMAC\left(R_{2^8(p-1),2}, \text{"\textbackslash x02"}\right) - &\text{if }\exists p | i = 2^8p\\ - R_{i-1,2} &\text{otherwise} - \end{cases}\\ - R_{i,3} &= - \begin{cases} - HMAC\left(R_{2^24(n-1),0}, \text{"\textbackslash x03"}\right) - &\text{if }\exists n | i = 2^24n\\ - HMAC\left(R_{2^16(m-1),1}, \text{"\textbackslash x03"}\right) - &\text{if }\exists m | i = 2^16m\\ - HMAC\left(R_{2^8(p-1),2}, \text{"\textbackslash x03"}\right) - &\text{if }\exists p | i = 2^8p\\ - HMAC\left(R_{i-1,3}, \text{"\textbackslash x03"}\right) - &\text{otherwise} - \end{cases} + H_0(A) &\equiv HMAC(A,\text{"\textbackslash x00"}) \\ + H_1(A) &\equiv HMAC(A,\text{"\textbackslash x01"}) \\ + H_2(A) &\equiv HMAC(A,\text{"\textbackslash x02"}) \\ + H_3(A) &\equiv HMAC(A,\text{"\textbackslash x03"}) \\ \end{align} -where :math:`HMAC(K, T)` is the HMAC-SHA-256_ of ``T``, using ``K`` as the -key. In summary: every :math:`2^8` iterations, :math:`R_{i,3}` is reseeded from -:math:`R_{i,2}`. Every :math:`2^16` iterations, :math:`R_{i,2}` and -:math:`R_{i,3}` are reseeded from :math:`R_{i,1}`. Every :math:`2^24` -iterations, :math:`R_{i,1}`, :math:`R_{i,2}` and :math:`R_{i,3}` are reseeded -from :math:`R_{i,0}`. - -This scheme allows the ratchet to be advanced an arbitrary amount forwards -while needing at most 1023 hash computations. A recipient can decrypt -conversation history onwards from the earliest value of the ratchet it is aware -of, but cannot decrypt history from before that point without reversing the -hash function. +where :math:`HMAC(A, T)` is the HMAC-SHA-256_ of ``T``, using ``A`` as the +key. For outbound sessions, the updated ratchet and counter are stored in the session. @@ -215,8 +233,8 @@ followed by the value encoded as a variable length integer. If the value is a string then the tag is followed by the length of the string encoded as a variable length integer followed by the string itself. -Olm uses a variable length encoding for integers. Each integer is encoded as a -sequence of bytes with the high bit set followed by a byte with the high bit +Megolm uses a variable length encoding for integers. Each integer is encoded as +a sequence of bytes with the high bit set followed by a byte with the high bit clear. The seven low bits of each byte store the bits of the integer. The least significant bits are stored in the first byte. |