aboutsummaryrefslogtreecommitdiff
path: root/docs/olm.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/olm.rst')
-rw-r--r--docs/olm.rst256
1 files changed, 256 insertions, 0 deletions
diff --git a/docs/olm.rst b/docs/olm.rst
new file mode 100644
index 0000000..51a38bd
--- /dev/null
+++ b/docs/olm.rst
@@ -0,0 +1,256 @@
+Olm: A Cryptographic Ratchet
+============================
+
+An implementation of the cryptographic ratchet described by
+https://github.com/trevp/axolotl/wiki.
+
+
+The Olm Algorithm
+-----------------
+
+Initial setup
+~~~~~~~~~~~~~
+
+The setup takes four Curve25519_ inputs: Identity keys for Alice and Bob,
+:math:`I_A` and :math:`I_B`, and ephemeral keys for Alice and Bob,
+:math:`E_A` and :math:`E_B`. A shared secret, :math:`S`, is generated using
+`Triple Diffie-Hellman`_. The initial 256 bit root key, :math:`R_0`, and 256
+bit chain key, :math:`C_{0,0}`, are derived from the shared secret using an
+HMAC-based Key Derivation Function using SHA-256_ as the hash function
+(HKDF-SHA-256_) with default salt and ``"OLM_ROOT"`` as the info.
+
+.. math::
+ \begin{align}
+ S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\;
+ \parallel\;ECDH\left(E_A,\,E_B\right)\\
+ R_0\;\parallel\;C_{0,0}&=HKDF\left(S,\,\text{"OLM\_ROOT"}\right)
+ \end{align}
+
+Advancing the root key
+~~~~~~~~~~~~~~~~~~~~~~
+
+Advancing a root key takes the previous root key, :math:`R_{i-1}`, and two
+Curve25519 inputs: the previous ratchet key, :math:`T_{i-1}`, and the current
+ratchet key :math:`T_i`. The even ratchet keys are generated by Alice.
+The odd ratchet keys are generated by Bob. A shared secret is generated
+using Diffie-Hellman on the ratchet keys. The next root key, :math:`R_i`, and
+chain key, :math:`C_{i,0}`, are derived from the shared secret using
+HKDF-SHA-256_ using :math:`R_{i-1}` as the salt and ``"OLM_RATCHET"`` as the
+info.
+
+.. math::
+ \begin{align}
+ R_i\;\parallel\;C_{i,0}&=HKDF\left(
+ ECDH\left(T_{i-1},\,T_i\right),\,
+ R_{i-1},\,
+ \text{"OLM\_RATCHET"}
+ \right)
+ \end{align}
+
+
+Advancing the chain key
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Advancing a root key takes the previous chain key, :math:`C_{i,j-i}`. The next
+chain key, :math:`C_{i,j}`, is the HMAC-SHA-256_ of ``"\x02"`` using the
+previous chain key as the key.
+
+.. math::
+ \begin{align}
+ C_{i,j}&=HMAC\left(C_{i,j-1},\,\text{"\textbackslash x02"}\right)
+ \end{align}
+
+Creating a message key
+~~~~~~~~~~~~~~~~~~~~~~
+
+Creating a message key takes the current chain key, :math:`C_{i,j}`. The
+message key, :math:`M_{i,j}`, is the HMAC-SHA-256_ of ``"\x01"`` using the
+current chain key as the key. The message keys where :math:`i` is even are used
+by Alice to encrypt messages. The message keys where :math:`i` is odd are used
+by Bob to encrypt messages.
+
+.. math::
+ \begin{align}
+ M_{i,j}&=HMAC\left(C_{i,j},\,\text{"\textbackslash x01"}\right)
+ \end{align}
+
+
+The Olm Protocol
+----------------
+
+Creating an outbound session
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Bob publishes his identity key, :math:`I_B`, and some single-use one-time
+keys :math:`E_B`.
+
+Alice downloads Bob's identity key, :math:`I_B`, and a one-time key,
+:math:`E_B`. Alice takes her identity key, :math:`I_A`, and generates a new
+single-use key, :math:`E_A`. Alice computes a root key, :math:`R_0`, and a
+chain key :math:`C_{0,0}`. Alice generates a new ratchet key :math:`T_0`.
+
+Sending the first pre-key messages
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Alice computes a message key, :math:`M_{0,j}`, using the current chain key,
+:math:`C_{0,j}`. Alice replaces the current chain key with :math:`C_{0,j+1}`.
+Alice encrypts her plain-text with the message key, :math:`M_{0,j}`, using an
+authenticated encryption scheme to get a cipher-text, :math:`X_{0,j}`. Alice
+sends her identity key, :math:`I_A`, her single-use key, :math:`E_A`, Bob's
+single-use key, :math:`E_B`, the current chain index, :math:`j`, her ratchet
+key, :math:`T_0`, and the cipher-text, :math:`X_{0,j}`, to Bob.
+
+Alice will continue to send pre-key messages until she receives a message from
+Bob.
+
+Creating an inbound session from a pre-key message
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Bob receives a pre-key message with Alice's identity key, :math:`I_A`,
+Alice's single-use key, :math:`E_A`, the public part of his single-use key,
+:math:`E_B`, the current chain index, :math:`j`, Alice's ratchet key,
+:math:`T_0`, and the cipher-text, :math:`X_{0,j}`. Bob looks up the private
+part of the single-use key, :math:`E_B`. Bob computes the root key :math:`R_0`,
+and the chain key :math:`C_{0,0}`. Bob then advances the chain key to compute
+the chain key used by the message, :math:`C_{0,j}`. Bob then creates the
+message key, :math:`M_{0,j}`, and attempts to decrypt the cipher-text,
+:math:`X_{0,j}`. If the cipher-text's authentication is correct then Bob can
+discard private part of his single-use one-time key, :math:`E_B`.
+
+Sending messages
+~~~~~~~~~~~~~~~~
+
+To send a message the user checks if they have a sender chain key,
+:math:`C_{i,j}`. Alice use chain keys where :math:`i` is even. Bob uses chain
+keys where :math:`i` is odd. If the chain key doesn't exist then a new ratchet
+key :math:`T_i` is generated and a the chain key, :math:`C_{i,0}`, is computed
+using :math:`R_{i-1}`, :math:`T_{i-1}` and :math:`T_i`. A message key,
+:math:`M_{i,j}` is computed from the current chain key, :math:`C_{i,j}`, and
+the chain key is replaced with the next chain key, :math:`C_{i,j+1}`. The
+plain-text is encrypted with :math:`M_{i,j}`, using an authenticated encryption
+scheme to get a cipher-text, :math:`X_{i,j}`. Then user sends the current
+chain index, :math:`j`, the ratchet key, :math:`T_i`, and the cipher-text,
+:math:`X_{i,j}`, to the other user.
+
+Receiving messages
+~~~~~~~~~~~~~~~~~~
+
+The user receives a message with the current chain index, :math:`j`, the
+ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`, from the
+other user. The user checks if they have a receiver chain with the correct
+:math:`i` by comparing the ratchet key, :math:`T_i`. If the chain doesn't exist
+then they compute a new receiver chain, :math:`C_{i,0}`, using :math:`R_{i-1}`,
+:math:`T_{i-1}` and :math:`T_i`. If the :math:`j` of the message is less than
+the current chain index on the receiver then the message may only be decrypted
+if the receiver has stored a copy of the message key :math:`M_{i,j}`. Otherwise
+the receiver computes the chain key, :math:`C_{i,j}`. The receiver computes the
+message key, :math:`M_{i,j}`, from the chain key and attempts to decrypt the
+cipher-text, :math:`X_{i,j}`.
+
+If the decryption succeeds the receiver updates the chain key for :math:`T_i`
+with :math:`C_{i,j+1}` and stores the message keys that were skipped in the
+process so that they can decode out of order messages. If the receiver created
+a new receiver chain then they discard their current sender chain so that
+they will create a new chain when they next send a message.
+
+The Olm Message Format
+----------------------
+
+Normal Messages
+~~~~~~~~~~~~~~~
+
+Olm messages start with a one byte version followed by a variable length
+payload followed by a fixed length message authentication code.
+
+.. code::
+
+ +--------------+------------------------------------+-----------+
+ | Version Byte | Payload Bytes | MAC Bytes |
+ +--------------+------------------------------------+-----------+
+
+The version byte is ``"\x01"``.
+
+The payload consists of key-value pairs where the keys are integers and the
+values are integers and strings. The keys are encoded as a variable length
+integer tag where the 3 lowest bits indicates the type of the value:
+0 for integers, 2 for strings. If the value is an integer then the tag is
+followed by the value encoded as a variable length integer. If the value is
+a string then the tag is followed by the length of the string encoded as
+a variable length integer followed by the string itself.
+
+Olm uses a variable length encoding for integers. Each integer is encoded as a
+sequence of bytes with the high bit set followed by a byte with the high bit
+clear. The seven low bits of each byte store the bits of the integer. The least
+significant bits are stored in the first byte.
+
+=========== ===== ======== ================================================
+ Name Tag Type Meaning
+=========== ===== ======== ================================================
+Ratchet-Key 0x0A String The public part of the ratchet key, :math:`T_{i}`,
+ of the message
+Chain-Index 0x10 Integer The chain index, :math:`j`, of the message
+Cipher-Text 0x22 String The cipher-text, :math:`X_{i,j}`, of the message
+=========== ===== ======== ================================================
+
+The length of the MAC is determined by the authenticated encryption algorithm
+being used. The MAC protects all of the bytes preceding the MAC.
+
+Pre-Key Messages
+~~~~~~~~~~~~~~~~
+
+Olm pre-key messages start with a one byte version followed by a variable
+length payload.
+
+.. code::
+
+ +--------------+------------------------------------+
+ | Version Byte | Payload Bytes |
+ +--------------+------------------------------------+
+
+The version byte is ``"\x01"``.
+
+The payload uses the same key-value format as for normal messages.
+
+============ ===== ======== ================================================
+ Name Tag Type Meaning
+============ ===== ======== ================================================
+One-Time-Key 0x0A String The public part of Bob's single-use key,
+ :math:`E_b`.
+Base-Key 0x12 String The public part of Alice's single-use key,
+ :math:`E_a`.
+Identity-Key 0x1A String The public part of Alice's identity key,
+ :math:`I_a`.
+Message 0x22 String An embedded Olm message with its own version and
+ MAC.
+============ ===== ======== ================================================
+
+Olm Authenticated Encryption
+----------------------------
+
+Version 1
+~~~~~~~~~
+
+Version 1 of Olm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding for
+encryption and HMAC-SHA-256_ for authentication. The 256 bit AES key, 256 bit
+HMAC key, and 128 bit AES IV are derived from the message key using
+HKDF-SHA-256_ using the default salt and an info of ``"OLM_KEYS"``.
+
+First the plain-text is encrypted to get the cipher-text, :math:`X_{i,j}`.
+Then the entire message, both the headers and cipher-text, are HMAC'd and the
+MAC is appended to the message.
+
+.. math::
+
+ \begin{align}
+ AES\_KEY_{i,j}\;\parallel\;HMAC\_KEY_{i,j}\;\parallel\;AES\_IV_{i,j}
+ &= HKDF\left(M_{i,j},\,\text{"OLM\_KEYS"}\right) \\
+ \end{align}
+
+.. _`Curve25519`: http://cr.yp.to/ecdh.html
+.. _`Triple Diffie-Hellman`: https://whispersystems.org/blog/simplifying-otr-deniability/
+.. _`HKDF-SHA-256`: https://tools.ietf.org/html/rfc5869
+.. _`HMAC-SHA-256`: https://tools.ietf.org/html/rfc2104
+.. _`SHA-256`: https://tools.ietf.org/html/rfc6234
+.. _`AES-256`: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
+.. _`CBC`: http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
+.. _`PCKS#7`: https://tools.ietf.org/html/rfc2315