#include "axolotl/axolotl.hh" namespace { std::uint8_t PROTOCOL_VERSION = 3; std::size_t MAC_LENGTH = 8; std::size_t KEY_LENGTH = Curve25519PublicKey::Length; std::uint8_t MESSAGE_KEY_SEED[1] = {0x01}; std::uint8_t CHAIN_KEY_SEED[1] = {0x02}; std::size_t MAX_MESSAGE_GAP = 2000; void create_chain_key( axolotl::SharedKey const & root_key, Curve25519KeyPair const & our_key, Curve25519PublicKey const & their_key, std::uint8_t const * info, std::size_t info_length, SharedSecret & new_root_key, ChainKey & new_chain_key ) { axolotl::SharedSecret secret; axolotl::curve25519_shared_secret(our_key, their_key, secret); std::uint8_t derived_secrets[64]; axolotl::hkdf_sha256( secret, sizeof(secret), root_key, sizeof(root_key), info, info_length, derived_secrets, sizeof(derived_secrets) ); std::memcpy(new_root_key, derived_secrets, 32); std::memcpy(new_chain_key.key, derived_secrets + 32, 32); new_chain_key.index = 0; std::memset(derived_secrets, 0, sizeof(derived_secrets); std::memset(secret, 0, sizeof(secret)); } void advance_chain_key( ChainKey const & chain_key, ChainKey & new_chain_key, ) { axolotl::hmac_sha256( chain_key.key, sizeof(chain_key.key), CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED), new_chain_key.key ); new_chain_key.index = chain_key.index + 1; } void create_message_keys( ChainKey const & chain_key, std::uint8_t const * info, std::size_t info_length, MessageKey & message_key ) { axolotl::SharedSecret secret; axolotl::hmac_sha256( chain_key.key, sizeof(chain_key.key), MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED), secret ); std::uint8_t derived_secrets[80]; axolotl::hkdf_sha256( secret, sizeof(secret), root_key, sizeof(root_key), info, info_length, derived_secrets, sizeof(derived_secrets) ); std::memcpy(message_key.cipher_key, derived_secrets, 32); std::memcpy(message_key.mac_key, derived_secrets + 32, 32); std::memcpy(message_key.iv, derived_secrets + 64, 16); message_key.index = chain_key.index; std::memset(derived_secrets, 0, sizeof(derived_secrets); std::memset(secret, 0, sizeof(secret)); } bool verify_mac( MessageKey const & message_key, std::uint8_t const * input, axolotl::MessageReader const & reader ) { std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH]; axolotl::hmac_sha256( keys.mac_key, sizeof(keys.mac_key), ciphertext, reader.body_length, mac ); bool result = std::memcmp(mac, reader.mac, MAC_LENGTH) == 0; std::memset(&mac, 0, HMAC_SHA256_OUTPUT_LENGTH); return result; } bool verify_mac_for_existing_chain( axolotl::Session const & session, axolotl::ReceiverChain const & chain, std::uint8_t const * input, axolotl::MessageReader const & reader ) { ReceiverChain new_chain = chain; if (reader.counter < chain.index) { return false; } /* Limit the number of hashes we're prepared to compute */ if (reader.counter - chain.index > MAX_MESSAGE_GAP) { return false; } while (new_chain.index < reader.counter) { advance_chain_key(new_chain, new_chain); } MessageKey message_key; create_message_keys( new_chain_key, sender.message_info, sender.message_info_length, message_key ); bool result = verify_mac(message_key, input, reader); std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key); return result; } bool verify_mac_for_new_chain( axolotl::Session const & session, std::uint8_t const * input, axolotl::MessageReader const & reader ) { SharedSecret new_root_key; ReceiverChain new_chain; /* They shouldn't move to a new chain until we've sent them a message * acknowledging the last one */ if (session.sender_chain.empty()) { return false; } /* Limit the number of hashes we're prepared to compute */ if (reader.counter > MAX_MESSAGE_GAP) { return false; } std::memcpy(new_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH); create_chain_key( root_key, sender_chain[0].ratchet_key, new_chain.ratchet_key, session.kdf_info.ratchet_info, session.kdf_info.ratchet_info_length, new_root_key, new_chain ); bool result = verify_mac_for_existing_chain( session, new_chain, input, reader ); std::memset(&new_root_key, 0, sizeof(new_root_key)); std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key); return result; } } // namespace std::size_t axolotl::Session::encrypt_max_output_length( std::size_t plaintext_length ) { std::size_t key_length = 1 + varstring_length(Curve25519PublicKey::Length); std::size_t counter = sender_chain.empty() ? 0 : sender_chain[0].index; std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length); return axolotl::encode_message_length( counter, KEY_LENGTH, padded, MAC_LENGTH ); } std::size_t axolotl::Session::encrypt_random_length() { return sender_chain.size() ? Curve25519PublicKey::Length : 0; } std::size_t axolotl::Session::encrypt( std::uint8_t const * plaintext, std::size_t plaintext_length, std::uint8_t const * random, std::size_t random_length, std::uint8_t * output, std::size_t max_output_length ) { if (random_length < encrypt_random_length()) { last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM; return std::size_t(-1); } if (max_output_length < encrypt_max_output_length()) { last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL; return std::size_t(-1); } if (sender_chain.empty()) { /** create sender chain */ } MessageKey keys; /** create message keys and advance chain */ std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length); std::size_t key_length = Curve25519PublicKey::Length; std::uint32_t counter = keys.index; const Curve25519PublicKey &ratchet_key = sender_chain[0].ratchet_key; axolotl::MessageWriter writer(axolotl::encode_message( PROTOCOL_VERSION, counter, key_length, padded, cipher_text )); std::memcpy(writer.ratchet_key, ratchet_key.public_key, key_length); axolotl::aes_encrypt_cbc( keys.cipher_key, keys.iv, plaintext, plaintext_length, writer.ciphertext ); std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH]; axolotl::hmac_sha256( keys.mac_key, sizeof(keys.mac_key), ciphertext, writer.body_length, mac ); std::memcpy(writer.mac, mac, MAC_LENGTH); return writer.body_length + MAC_LENGTH; } std::size_t decrypt_max_plaintext_length( std::size_t input_length ) { return input_length; } std::size_t axolotl::Session::decrypt( std::uint8_t const * input, std::size_t input_length, std::uint8_t * plaintext, std::size_t max_plaintext_length ) { if (max_plaintext_length < decrypt_max_plaintext_length(input_length)) { last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL; return std::size_t(-1); } axolotl::MessageReader reader(axolotl::decode_message( input, input_length, MAC_LENGTH )); if (reader.version != PROTOCOL_VERSION) { last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION; return std::size_t(-1); } if (reader.body_length == 0 || reader.ratchet_key_length != Curve25519PublicKey::Length) { last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT; return std::size_t(-1); } ReceiverChain * chain = NULL; for (axolotl::ReceiverChain & receiver_chain : receiver_chains) { if (0 == std::memcmp( receiver_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH )) { chain = &receiver_chain; break; } } if (!chain) { if (!verify_mac_for_new_chain(*this, input, reader)) { last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC; return std::size_t(-1); } } else { if (chain->index > reader.counter) { /* Chain already advanced beyond the key for this message * Check if the message keys are in the skipped key list. */ for (const axolotl::SkippedMessageKey & skipped : skipped_message_keys) { if (reader.counter == skipped.message_key.index && 0 == std::memcmp( skipped.ratchet_key, reader.ratchet_key, KEY_LENGTH )) { /* Found the key for this message. Check the MAC. */ if (!verify_mac(skipped.message_key, input, reader)) { last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC; return std::size_t(-1); } std::size_t result = axolotl::aes_decrypt_cbc( skipped.message_key.cipher_key, skipped.message_key.iv, reader.ciphertext, reader.ciphertext_length, plaintext ); if (result == std::size_t(-1)) { last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC; return result; } /* Remove the key from the skipped keys now that we've * decoded the message it corresponds to. */ skipped_message_keys.erase(&skipped); return result; } } /* No matching keys for the message, fail with bad mac */ last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC; return std::size_t(-1); } else if (!verify_mac_for_existing_chain(*chain, input, reader)) { last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC; return std::size_t(-1); } } if (!chain) { } }