1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
Olm: A Crytographic Ratchet
===========================
An implementation of the cryptographic ratchet described by
https://github.com/trevp/axolotl/wiki.
The Olm Algorithm
-----------------
.. figure:: Axolotl.svg
Initial setup
~~~~~~~~~~~~~
The setup takes four Curve25519 inputs: Identity keys for Alice and Bob,
:math:`I_A` and :math:`I_B`, and emphemeral keys for Alice and Bob,
:math:`E_A` and :math:`E_B`. A shared secret, :math:`S`, is generated using
Triple Diffie-Hellman. The initial 256 bit root key, :math:`R_0`, and 256 bit
chain key, :math:`C_{0,0}`, are derived from the shared secret using an
HMAC-based Key Derivation Function (HKDF) with default salt.
.. math::
\begin{align}
S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\;
\parallel\;ECDH\left(E_A,\,E_B\right)\\
R_0\;\parallel\;C_{0,0}&=HKDF\left(S,\,\text{"OLM\_ROOT"}\right)
\end{align}
Advancing the root key
~~~~~~~~~~~~~~~~~~~~~~
Advancing a root key takes the previous root key, :math:`R_{i-1}`, and two
Curve25519 inputs: the previous ratchet key, :math:`T_{i-1}`, and the current
ratchet key :math:`T_i`. The even ratchet keys are generated by Alice.
The odd ratchet keys are generated by Bob. A shared secret is generated
using Diffie-Hellman on the ratchet keys. The next root key, :math:`R_i`, and
chain key, :math:`C_{i,0}`, are derived from the shared secret using an
HMAC-based Key Derivation Function (HKDF) using :math:`R_{i-1}` as the salt.
.. math::
\begin{align}
R_i\;\parallel\;C_{i,0}&=HKDF\left(
ECDH\left(T_{i-1},\,T_i\right),\,
R_{i-1},\,
\text{"OLM\_RATCHET"}
\right)
\end{align}
Advancing the chain key
~~~~~~~~~~~~~~~~~~~~~~~
Advancing a root key takes the previous chain key, :math:`C_{i,j-i}`. The next
chain key, :math:`C_{i,j}`, is the HMAC of ``"\x02"`` using the previous chain
key as the key.
.. math::
\begin{align}
C_{i,j}&=HMAC\left(C_{i,j-1},\,\text{"\textbackslash x02"}\right)
\end{align}
Creating a message key
~~~~~~~~~~~~~~~~~~~~~~
Creating a message key takes the current chain key, :math:`C_{i,j}`. The
message key, :math:`M_{i,j}`, is the HMAC of ``"\x01"`` using the current
chain key as the key. The message keys where :math:`i` is even are used by
Alice to encrypt messages. The message keys where :math:`i` is odd are used
by Bob to encrypt messages.
.. math::
\begin{align}
M_{i,j}&=HMAC\left(C_{i,j},\,\text{"\textbackslash x01"}\right)
\end{align}
The Olm Protocol
----------------
Creating an outbound session
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bob publishes his identity key, :math:`I_B`, and some single-use one-time
keys :math:`E_B`.
Alice downloads Bob's identity key, :math:`I_B`, and a one-time key,
:math:`E_B`. Alice takes her identity key, :math:`I_A`, and generates a new
single-use key, :math:`E_A`. Alice computes a root key, :math:`R_0`, and a
chain key :math:`C_{0,0}`. Alice generates a new ratchet key :math:`T_0`.
Sending the first pre-key messages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alice computes a message key, :math:`M_{0,j}`, using the current chain key,
:math:`C_{0,j}`. Alice replaces the current chain key with :math:`C_{0,j+1}`.
Alice encrypts her plain-text with the message key, :math:`M_{0,j}`, using an
authenticated encryption scheme to get a cipher-text, :math:`X_{0,j}`. Alice
sends her identity key, :math:`I_A`, her single-use key, :math:`E_A`, Bob's
single-use key, :math:`E_B`, the current chain index, :math:`j`, her ratchet
key, :math:`T_0`, and the cipher-text, :math:`X_{0,j}`, to Bob.
Alice will continue to send pre-key messages until she receives a message from
Bob.
Creating an inbound session from a pre-key message
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bob receives a pre-key message with Alice's identity key, :math:`I_A`,
Alice's single-use key, :math:`E_A`, the public part of his single-use key,
:math:`E_B`, the current chain index, :math:`j`, Alice's ratchet key,
:math:`T_0`, and the cipher-text, :math:`X_{0,j}`. Bob looks up the private
part of the single-use key, :math:`E_B`. Bob computes the root key :math:`R_0`,
and the chain key :math:`C_{0,0}`. Bob then advances the chain key to compute
the chain key used by the message, :math:`C_{0,j}`. Bob then creates the
message key, :math:`M_{0,j}`, and attempts to decrypt the ciphertext,
:math:`X_{0,j}`. If the cipher-text's authentication is correct then Bob can
discard private part of his single-use one-time key, :math:`E_B`.
Sending messages
~~~~~~~~~~~~~~~~
To send a message the user checks if they have a sender chain key,
:math:`C_{i,j}`. Alice use chain keys where :math:`i` is even. Bob uses chain
keys where :math:`i` is odd. If the chain key doesn't exist then a new ratchet
key :math:`T_i` is generated and a the chain key, :math:`C_{i,0}`, is computed
using :math:`R_{i-1}`, :math:`T_{i-1}` and :math:`T_i`. A message key,
:math:`M_{i,j}` is computed from the current chain key, :math:`C_{i,j}`, and
the chain key is replaced with the next chain key, :math:`C_{i,j+1}`. The
plain-text is encrypted with :math:`M_{i,j}`, using an authenticated encryption
scheme to get a cipher-text, :math:`X_{i,j}`. Then user sends the current
chain index, :math:`j`, the ratchet key, :math:`T_i`, and the cipher-text,
:math:`X_{i,j}`, to the other user.
Receiving messages
~~~~~~~~~~~~~~~~~~
The user receives a message with the current chain index, :math:`j`, the
ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`, from the
other user. The user checks if they have a receiver chain with the correct
:math:`i` by comparing the ratchet key, :math:`T_i`. If the chain doesn't exist
then they compute a new receiver chain, :math:`C_{i,0}`, using :math:`R_{i-1}`,
:math:`T_{i-1}` and :math:`T_i`. If the :math:`j` of the message is less than
the current chain index on the receiver then the message may only be decrypted
if the receiver has stored a copy of the message key :math:`M_{i,j}`. Otherwise
the receiver computes the chain key, :math:`C_{i,j}`. The receiver computes the
message key, :math:`M_{i,j}`, from the chain key and attempts to decrypt the
cipher-text, :math:`X_{i,j}`.
If the decryption succeeds the reciever updates the chain key for :math:`T_i`
with :math:`C_{i,j+1}` and stores the message keys that were skipped in the
process so that they can decode out of order messages. If the receiver created
a new receiver chain then they discard their current sender chain so that
they will create a new chain when they next send a message.
|