1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
Olm: A Cryptographic Ratchet
============================
An implementation of the cryptographic ratchet described by
https://github.com/trevp/axolotl/wiki.
The Olm Algorithm
-----------------
Initial setup
~~~~~~~~~~~~~
The setup takes four Curve25519_ inputs: Identity keys for Alice and Bob,
:math:`I_A` and :math:`I_B`, and ephemeral keys for Alice and Bob,
:math:`E_A` and :math:`E_B`. A shared secret, :math:`S`, is generated using
`Triple Diffie-Hellman`_. The initial 256 bit root key, :math:`R_0`, and 256
bit chain key, :math:`C_{0,0}`, are derived from the shared secret using an
HMAC-based Key Derivation Function using SHA-256_ as the hash function
(HKDF-SHA-256_) with default salt and ``"OLM_ROOT"`` as the info.
.. math::
\begin{align}
S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\;
\parallel\;ECDH\left(E_A,\,E_B\right)\\
R_0\;\parallel\;C_{0,0}&=HKDF\left(S,\,\text{"OLM\_ROOT"}\right)
\end{align}
Advancing the root key
~~~~~~~~~~~~~~~~~~~~~~
Advancing a root key takes the previous root key, :math:`R_{i-1}`, and two
Curve25519 inputs: the previous ratchet key, :math:`T_{i-1}`, and the current
ratchet key :math:`T_i`. The even ratchet keys are generated by Alice.
The odd ratchet keys are generated by Bob. A shared secret is generated
using Diffie-Hellman on the ratchet keys. The next root key, :math:`R_i`, and
chain key, :math:`C_{i,0}`, are derived from the shared secret using
HKDF-SHA-256_ using :math:`R_{i-1}` as the salt and ``"OLM_RATCHET"`` as the
info.
.. math::
\begin{align}
R_i\;\parallel\;C_{i,0}&=HKDF\left(
ECDH\left(T_{i-1},\,T_i\right),\,
R_{i-1},\,
\text{"OLM\_RATCHET"}
\right)
\end{align}
Advancing the chain key
~~~~~~~~~~~~~~~~~~~~~~~
Advancing a root key takes the previous chain key, :math:`C_{i,j-i}`. The next
chain key, :math:`C_{i,j}`, is the HMAC-SHA-256_ of ``"\x02"`` using the
previous chain key as the key.
.. math::
\begin{align}
C_{i,j}&=HMAC\left(C_{i,j-1},\,\text{"\textbackslash x02"}\right)
\end{align}
Creating a message key
~~~~~~~~~~~~~~~~~~~~~~
Creating a message key takes the current chain key, :math:`C_{i,j}`. The
message key, :math:`M_{i,j}`, is the HMAC-SHA-256_ of ``"\x01"`` using the
current chain key as the key. The message keys where :math:`i` is even are used
by Alice to encrypt messages. The message keys where :math:`i` is odd are used
by Bob to encrypt messages.
.. math::
\begin{align}
M_{i,j}&=HMAC\left(C_{i,j},\,\text{"\textbackslash x01"}\right)
\end{align}
The Olm Protocol
----------------
Creating an outbound session
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bob publishes his identity key, :math:`I_B`, and some single-use one-time
keys :math:`E_B`.
Alice downloads Bob's identity key, :math:`I_B`, and a one-time key,
:math:`E_B`. Alice takes her identity key, :math:`I_A`, and generates a new
single-use key, :math:`E_A`. Alice computes a root key, :math:`R_0`, and a
chain key :math:`C_{0,0}`. Alice generates a new ratchet key :math:`T_0`.
Sending the first pre-key messages
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alice computes a message key, :math:`M_{0,j}`, using the current chain key,
:math:`C_{0,j}`. Alice replaces the current chain key with :math:`C_{0,j+1}`.
Alice encrypts her plain-text with the message key, :math:`M_{0,j}`, using an
authenticated encryption scheme to get a cipher-text, :math:`X_{0,j}`. Alice
sends her identity key, :math:`I_A`, her single-use key, :math:`E_A`, Bob's
single-use key, :math:`E_B`, the current chain index, :math:`j`, her ratchet
key, :math:`T_0`, and the cipher-text, :math:`X_{0,j}`, to Bob.
Alice will continue to send pre-key messages until she receives a message from
Bob.
Creating an inbound session from a pre-key message
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bob receives a pre-key message with Alice's identity key, :math:`I_A`,
Alice's single-use key, :math:`E_A`, the public part of his single-use key,
:math:`E_B`, the current chain index, :math:`j`, Alice's ratchet key,
:math:`T_0`, and the cipher-text, :math:`X_{0,j}`. Bob looks up the private
part of the single-use key, :math:`E_B`. Bob computes the root key :math:`R_0`,
and the chain key :math:`C_{0,0}`. Bob then advances the chain key to compute
the chain key used by the message, :math:`C_{0,j}`. Bob then creates the
message key, :math:`M_{0,j}`, and attempts to decrypt the cipher-text,
:math:`X_{0,j}`. If the cipher-text's authentication is correct then Bob can
discard private part of his single-use one-time key, :math:`E_B`.
Sending messages
~~~~~~~~~~~~~~~~
To send a message the user checks if they have a sender chain key,
:math:`C_{i,j}`. Alice use chain keys where :math:`i` is even. Bob uses chain
keys where :math:`i` is odd. If the chain key doesn't exist then a new ratchet
key :math:`T_i` is generated and a the chain key, :math:`C_{i,0}`, is computed
using :math:`R_{i-1}`, :math:`T_{i-1}` and :math:`T_i`. A message key,
:math:`M_{i,j}` is computed from the current chain key, :math:`C_{i,j}`, and
the chain key is replaced with the next chain key, :math:`C_{i,j+1}`. The
plain-text is encrypted with :math:`M_{i,j}`, using an authenticated encryption
scheme to get a cipher-text, :math:`X_{i,j}`. Then user sends the current
chain index, :math:`j`, the ratchet key, :math:`T_i`, and the cipher-text,
:math:`X_{i,j}`, to the other user.
Receiving messages
~~~~~~~~~~~~~~~~~~
The user receives a message with the current chain index, :math:`j`, the
ratchet key, :math:`T_i`, and the cipher-text, :math:`X_{i,j}`, from the
other user. The user checks if they have a receiver chain with the correct
:math:`i` by comparing the ratchet key, :math:`T_i`. If the chain doesn't exist
then they compute a new receiver chain, :math:`C_{i,0}`, using :math:`R_{i-1}`,
:math:`T_{i-1}` and :math:`T_i`. If the :math:`j` of the message is less than
the current chain index on the receiver then the message may only be decrypted
if the receiver has stored a copy of the message key :math:`M_{i,j}`. Otherwise
the receiver computes the chain key, :math:`C_{i,j}`. The receiver computes the
message key, :math:`M_{i,j}`, from the chain key and attempts to decrypt the
cipher-text, :math:`X_{i,j}`.
If the decryption succeeds the receiver updates the chain key for :math:`T_i`
with :math:`C_{i,j+1}` and stores the message keys that were skipped in the
process so that they can decode out of order messages. If the receiver created
a new receiver chain then they discard their current sender chain so that
they will create a new chain when they next send a message.
The Olm Message Format
----------------------
Normal Messages
~~~~~~~~~~~~~~~
Olm messages start with a one byte version followed by a variable length
payload followed by a fixed length message authentication code.
.. code::
+--------------+------------------------------------+-----------+
| Version Byte | Payload Bytes | MAC Bytes |
+--------------+------------------------------------+-----------+
The version byte is ``"\x01"``.
The payload consists of key-value pairs where the keys are integers and the
values are integers and strings. The keys are encoded as a variable length
integer tag where the 3 lowest bits indicates the type of the value:
0 for integers, 2 for strings. If the value is an integer then the tag is
followed by the value encoded as a variable length integer. If the value is
a string then the tag is followed by the length of the string encoded as
a variable length integer followed by the string itself.
Olm uses a variable length encoding for integers. Each integer is encoded as a
sequence of bytes with the high bit set followed by a byte with the high bit
clear. The seven low bits of each byte store the bits of the integer. The least
significant bits are stored in the first byte.
=========== ===== ======== ================================================
Name Tag Type Meaning
=========== ===== ======== ================================================
Ratchet-Key 0x0A String The ratchet key, :math:`T_{i}`, of the message
Chain-Index 0x10 Integer The chain index, :math:`j`, of the message
Cipher-Text 0x22 String The cipher-text, :math:`X_{i,j}`, of the message
=========== ===== ======== ================================================
The length of the MAC is determined by the authenticated encryption algorithm
being used. The MAC protects all of the bytes preceding the MAC.
Pre-Key Messages
~~~~~~~~~~~~~~~~
Olm pre-key messages start with a one byte version followed by a variable
length payload.
.. code::
+--------------+------------------------------------+
| Version Byte | Payload Bytes |
+--------------+------------------------------------+
The version byte is ``"\x01"``.
The payload uses the same key-value format as for normal messages.
============ ===== ======== ================================================
Name Tag Type Meaning
============ ===== ======== ================================================
One-Time-Key 0x0A String Bob's single-use key, :math:`E_b`.
Base-Key 0x12 String Alice's single-use key, :math:`E_a`.
Identity-Key 0x1A String Alice's identity key, :math:`I_a`.
Message 0x22 String An embedded Olm message with its own version and
MAC.
============ ===== ======== ================================================
Olm Authenticated Encryption
----------------------------
Version 1
~~~~~~~~~
Version 1 of Olm uses AES-256_ in CBC_ mode with `PCKS#7`_ padding for
encryption and HMAC-SHA-256_ for authentication. The 256 bit AES key, 256 bit
HMAC key, and 128 bit AES IV are derived from the message key using
HKDF-SHA-256_ using the default salt and an info of ``"OLM_KEYS"``.
First the plain-text is encrypted to get the cipher-text, :math:`X_{i,j}`.
Then the entire message, both the headers and cipher-text, are HMAC'd and the
MAC is appended to the message.
.. math::
\begin{align}
AES\_KEY_{i,j}\;\parallel\;HMAC\_KEY_{i,j}\;\parallel\;AES\_IV_{i,j}
&= HKDF\left(M_{i,j},\,\text{"OLM\_KEYS"}\right) \\
\end{align}
.. _`Curve25519`: http://cr.yp.to/ecdh.html
.. _`Triple Diffie-Hellman`: https://whispersystems.org/blog/simplifying-otr-deniability/
.. _`HKDF-SHA-256`: https://tools.ietf.org/html/rfc5869
.. _`HMAC-SHA-256`: https://tools.ietf.org/html/rfc2104
.. _`SHA-256`: https://tools.ietf.org/html/rfc6234
.. _`AES-256`: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
.. _`CBC`: http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
.. _`PCKS#7`: https://tools.ietf.org/html/rfc2315
|