aboutsummaryrefslogtreecommitdiff
path: root/sha1.c
blob: 2f9622d437954a77cf82059c4607289ff0a3cbcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*********************************************************************
* Filename:   sha1.c
* Author:     Brad Conte (brad AT bradconte.com)
* Copyright:
* Disclaimer: This code is presented "as is" without any guarantees.
* Details:    Implementation of the SHA1 hashing algorithm.
              Algorithm specification can be found here:
               * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
              This implementation uses little endian byte order.
*********************************************************************/

/*************************** HEADER FILES ***************************/
#include <stdlib.h>
#include <memory.h>
#include "sha1.h"

/****************************** MACROS ******************************/
#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))

/*********************** FUNCTION DEFINITIONS ***********************/
void sha1_transform(SHA1_CTX *ctx, const BYTE data[])
{
	WORD a, b, c, d, e, i, j, t, m[80];

	for (i = 0, j = 0; i < 16; ++i, j += 4)
		m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
	for ( ; i < 80; ++i) {
		m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
		m[i] = (m[i] << 1) | (m[i] >> 31);
	}

	a = ctx->state[0];
	b = ctx->state[1];
	c = ctx->state[2];
	d = ctx->state[3];
	e = ctx->state[4];

	for (i = 0; i < 20; ++i) {
		t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
		e = d;
		d = c;
		c = ROTLEFT(b, 30);
		b = a;
		a = t;
	}
	for ( ; i < 40; ++i) {
		t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
		e = d;
		d = c;
		c = ROTLEFT(b, 30);
		b = a;
		a = t;
	}
	for ( ; i < 60; ++i) {
		t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d))  + e + ctx->k[2] + m[i];
		e = d;
		d = c;
		c = ROTLEFT(b, 30);
		b = a;
		a = t;
	}
	for ( ; i < 80; ++i) {
		t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
		e = d;
		d = c;
		c = ROTLEFT(b, 30);
		b = a;
		a = t;
	}

	ctx->state[0] += a;
	ctx->state[1] += b;
	ctx->state[2] += c;
	ctx->state[3] += d;
	ctx->state[4] += e;
}

void sha1_init(SHA1_CTX *ctx)
{
	ctx->datalen = 0;
	ctx->bitlen = 0;
	ctx->state[0] = 0x67452301;
	ctx->state[1] = 0xEFCDAB89;
	ctx->state[2] = 0x98BADCFE;
	ctx->state[3] = 0x10325476;
	ctx->state[4] = 0xc3d2e1f0;
	ctx->k[0] = 0x5a827999;
	ctx->k[1] = 0x6ed9eba1;
	ctx->k[2] = 0x8f1bbcdc;
	ctx->k[3] = 0xca62c1d6;
}

void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len)
{
	size_t i;

	for (i = 0; i < len; ++i) {
		ctx->data[ctx->datalen] = data[i];
		ctx->datalen++;
		if (ctx->datalen == 64) {
			sha1_transform(ctx, ctx->data);
			ctx->bitlen += 512;
			ctx->datalen = 0;
		}
	}
}

void sha1_final(SHA1_CTX *ctx, BYTE hash[])
{
	WORD i;

	i = ctx->datalen;

	// Pad whatever data is left in the buffer.
	if (ctx->datalen < 56) {
		ctx->data[i++] = 0x80;
		while (i < 56)
			ctx->data[i++] = 0x00;
	}
	else {
		ctx->data[i++] = 0x80;
		while (i < 64)
			ctx->data[i++] = 0x00;
		sha1_transform(ctx, ctx->data);
		memset(ctx->data, 0, 56);
	}

	// Append to the padding the total message's length in bits and transform.
	ctx->bitlen += ctx->datalen * 8;
	ctx->data[63] = ctx->bitlen;
	ctx->data[62] = ctx->bitlen >> 8;
	ctx->data[61] = ctx->bitlen >> 16;
	ctx->data[60] = ctx->bitlen >> 24;
	ctx->data[59] = ctx->bitlen >> 32;
	ctx->data[58] = ctx->bitlen >> 40;
	ctx->data[57] = ctx->bitlen >> 48;
	ctx->data[56] = ctx->bitlen >> 56;
	sha1_transform(ctx, ctx->data);

	// Since this implementation uses little endian byte ordering and MD uses big endian,
	// reverse all the bytes when copying the final state to the output hash.
	for (i = 0; i < 4; ++i) {
		hash[i]      = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
		hash[i + 4]  = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
		hash[i + 8]  = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
		hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
		hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
	}
}