1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/* Copyright 2015 OpenMarket Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "olm/crypto.hh"
#include "olm/memory.hh"
#include <cstring>
extern "C" {
#include "crypto-algorithms/aes.h"
#include "crypto-algorithms/sha256.h"
}
#include "ed25519/src/ed25519.h"
#include "curve25519-donna.h"
namespace {
static const std::uint8_t CURVE25519_BASEPOINT[32] = {9};
static const std::size_t AES_KEY_SCHEDULE_LENGTH = 60;
static const std::size_t AES_KEY_BITS = 8 * AES256_KEY_LENGTH;
static const std::size_t AES_BLOCK_LENGTH = 16;
static const std::size_t SHA256_BLOCK_LENGTH = 64;
static const std::uint8_t HKDF_DEFAULT_SALT[32] = {};
template<std::size_t block_size>
inline static void xor_block(
std::uint8_t * block,
std::uint8_t const * input
) {
for (std::size_t i = 0; i < block_size; ++i) {
block[i] ^= input[i];
}
}
inline static void hmac_sha256_key(
std::uint8_t const * input_key, std::size_t input_key_length,
std::uint8_t * hmac_key
) {
std::memset(hmac_key, 0, SHA256_BLOCK_LENGTH);
if (input_key_length > SHA256_BLOCK_LENGTH) {
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input_key, input_key_length);
::sha256_final(&context, hmac_key);
} else {
std::memcpy(hmac_key, input_key, input_key_length);
}
}
inline static void hmac_sha256_init(
::SHA256_CTX * context,
std::uint8_t const * hmac_key
) {
std::uint8_t i_pad[SHA256_BLOCK_LENGTH];
std::memcpy(i_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
i_pad[i] ^= 0x36;
}
::sha256_init(context);
::sha256_update(context, i_pad, SHA256_BLOCK_LENGTH);
olm::unset(i_pad);
}
inline static void hmac_sha256_final(
::SHA256_CTX * context,
std::uint8_t const * hmac_key,
std::uint8_t * output
) {
std::uint8_t o_pad[SHA256_BLOCK_LENGTH + SHA256_OUTPUT_LENGTH];
std::memcpy(o_pad, hmac_key, SHA256_BLOCK_LENGTH);
for (std::size_t i = 0; i < SHA256_BLOCK_LENGTH; ++i) {
o_pad[i] ^= 0x5C;
}
::sha256_final(context, o_pad + SHA256_BLOCK_LENGTH);
::SHA256_CTX final_context;
::sha256_init(&final_context);
::sha256_update(&final_context, o_pad, sizeof(o_pad));
::sha256_final(&final_context, output);
olm::unset(final_context);
olm::unset(o_pad);
}
} // namespace
void _olm_crypto_curve25519_generate_key(
uint8_t const * random_32_bytes,
struct _olm_curve25519_key_pair *key_pair
) {
std::memcpy(
key_pair->private_key.private_key, random_32_bytes,
CURVE25519_KEY_LENGTH
);
::curve25519_donna(
key_pair->public_key.public_key,
key_pair->private_key.private_key,
CURVE25519_BASEPOINT
);
}
void _olm_crypto_curve25519_shared_secret(
const struct _olm_curve25519_key_pair *our_key,
const struct _olm_curve25519_public_key * their_key,
std::uint8_t * output
) {
::curve25519_donna(output, our_key->private_key.private_key, their_key->public_key);
}
void _olm_crypto_ed25519_generate_key(
std::uint8_t const * random_32_bytes,
struct _olm_ed25519_key_pair *key_pair
) {
::ed25519_create_keypair(
key_pair->public_key.public_key, key_pair->private_key.private_key,
random_32_bytes
);
}
void _olm_crypto_ed25519_sign(
const struct _olm_ed25519_key_pair *our_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t * output
) {
::ed25519_sign(
output,
message, message_length,
our_key->public_key.public_key,
our_key->private_key.private_key
);
}
int _olm_crypto_ed25519_verify(
const struct _olm_ed25519_public_key *their_key,
std::uint8_t const * message, std::size_t message_length,
std::uint8_t const * signature
) {
return 0 != ::ed25519_verify(
signature,
message, message_length,
their_key->public_key
);
}
std::size_t olm::aes_encrypt_cbc_length(
std::size_t input_length
) {
return input_length + AES_BLOCK_LENGTH - input_length % AES_BLOCK_LENGTH;
}
void olm::aes_encrypt_cbc(
olm::Aes256Key const & key,
olm::Aes256Iv const & iv,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key.key, key_schedule, AES_KEY_BITS);
std::uint8_t input_block[AES_BLOCK_LENGTH];
std::memcpy(input_block, iv.iv, AES_BLOCK_LENGTH);
while (input_length >= AES_BLOCK_LENGTH) {
xor_block<AES_BLOCK_LENGTH>(input_block, input);
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
std::memcpy(input_block, output, AES_BLOCK_LENGTH);
input += AES_BLOCK_LENGTH;
output += AES_BLOCK_LENGTH;
input_length -= AES_BLOCK_LENGTH;
}
std::size_t i = 0;
for (; i < input_length; ++i) {
input_block[i] ^= input[i];
}
for (; i < AES_BLOCK_LENGTH; ++i) {
input_block[i] ^= AES_BLOCK_LENGTH - input_length;
}
::aes_encrypt(input_block, output, key_schedule, AES_KEY_BITS);
olm::unset(key_schedule);
olm::unset(input_block);
}
std::size_t olm::aes_decrypt_cbc(
olm::Aes256Key const & key,
olm::Aes256Iv const & iv,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint32_t key_schedule[AES_KEY_SCHEDULE_LENGTH];
::aes_key_setup(key.key, key_schedule, AES_KEY_BITS);
std::uint8_t block1[AES_BLOCK_LENGTH];
std::uint8_t block2[AES_BLOCK_LENGTH];
std::memcpy(block1, iv.iv, AES_BLOCK_LENGTH);
for (std::size_t i = 0; i < input_length; i += AES_BLOCK_LENGTH) {
std::memcpy(block2, &input[i], AES_BLOCK_LENGTH);
::aes_decrypt(&input[i], &output[i], key_schedule, AES_KEY_BITS);
xor_block<AES_BLOCK_LENGTH>(&output[i], block1);
std::memcpy(block1, block2, AES_BLOCK_LENGTH);
}
olm::unset(key_schedule);
olm::unset(block1);
olm::unset(block2);
std::size_t padding = output[input_length - 1];
return (padding > input_length) ? std::size_t(-1) : (input_length - padding);
}
void _olm_crypto_sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
::SHA256_CTX context;
::sha256_init(&context);
::sha256_update(&context, input, input_length);
::sha256_final(&context, output);
olm::unset(context);
}
void _olm_crypto_hmac_sha256(
std::uint8_t const * key, std::size_t key_length,
std::uint8_t const * input, std::size_t input_length,
std::uint8_t * output
) {
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
::SHA256_CTX context;
hmac_sha256_key(key, key_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, output);
olm::unset(hmac_key);
olm::unset(context);
}
void _olm_crypto_hkdf_sha256(
std::uint8_t const * input, std::size_t input_length,
std::uint8_t const * salt, std::size_t salt_length,
std::uint8_t const * info, std::size_t info_length,
std::uint8_t * output, std::size_t output_length
) {
::SHA256_CTX context;
std::uint8_t hmac_key[SHA256_BLOCK_LENGTH];
std::uint8_t step_result[SHA256_OUTPUT_LENGTH];
std::size_t bytes_remaining = output_length;
std::uint8_t iteration = 1;
if (!salt) {
salt = HKDF_DEFAULT_SALT;
salt_length = sizeof(HKDF_DEFAULT_SALT);
}
/* Extract */
hmac_sha256_key(salt, salt_length, hmac_key);
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, input, input_length);
hmac_sha256_final(&context, hmac_key, step_result);
hmac_sha256_key(step_result, SHA256_OUTPUT_LENGTH, hmac_key);
/* Expand */
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
while (bytes_remaining > SHA256_OUTPUT_LENGTH) {
std::memcpy(output, step_result, SHA256_OUTPUT_LENGTH);
output += SHA256_OUTPUT_LENGTH;
bytes_remaining -= SHA256_OUTPUT_LENGTH;
iteration ++;
hmac_sha256_init(&context, hmac_key);
::sha256_update(&context, step_result, SHA256_OUTPUT_LENGTH);
::sha256_update(&context, info, info_length);
::sha256_update(&context, &iteration, 1);
hmac_sha256_final(&context, hmac_key, step_result);
}
std::memcpy(output, step_result, bytes_remaining);
olm::unset(context);
olm::unset(hmac_key);
olm::unset(step_result);
}
|