/////////////////////////////////////////////////////////////////////////////// // Matrice.cpp // =========== // NxN Matrix Math classes // // The elements of the matrix are stored as column major order. // | 0 2 | | 0 3 6 | | 0 4 8 12 | // | 1 3 | | 1 4 7 | | 1 5 9 13 | // | 2 5 8 | | 2 6 10 14 | // | 3 7 11 15 | // // AUTHOR: Song Ho Ahn (song.ahn@gmail.com) // CREATED: 2005-06-24 // UPDATED: 2014-09-21 // // Copyright (C) 2005 Song Ho Ahn /////////////////////////////////////////////////////////////////////////////// #include #include #include "Matrices.h" const float DEG2RAD = 3.141593f / 180; const float EPSILON = 0.00001f; /////////////////////////////////////////////////////////////////////////////// // transpose 2x2 matrix /////////////////////////////////////////////////////////////////////////////// Matrix2& Matrix2::transpose() { std::swap(m[1], m[2]); return *this; } /////////////////////////////////////////////////////////////////////////////// // return the determinant of 2x2 matrix /////////////////////////////////////////////////////////////////////////////// float Matrix2::getDeterminant() { return m[0] * m[3] - m[1] * m[2]; } /////////////////////////////////////////////////////////////////////////////// // inverse of 2x2 matrix // If cannot find inverse, set identity matrix /////////////////////////////////////////////////////////////////////////////// Matrix2& Matrix2::invert() { float determinant = getDeterminant(); if(fabs(determinant) <= EPSILON) { return identity(); } float tmp = m[0]; // copy the first element float invDeterminant = 1.0f / determinant; m[0] = invDeterminant * m[3]; m[1] = -invDeterminant * m[1]; m[2] = -invDeterminant * m[2]; m[3] = invDeterminant * tmp; return *this; } /////////////////////////////////////////////////////////////////////////////// // transpose 3x3 matrix /////////////////////////////////////////////////////////////////////////////// Matrix3& Matrix3::transpose() { std::swap(m[1], m[3]); std::swap(m[2], m[6]); std::swap(m[5], m[7]); return *this; } /////////////////////////////////////////////////////////////////////////////// // return determinant of 3x3 matrix /////////////////////////////////////////////////////////////////////////////// float Matrix3::getDeterminant() { return m[0] * (m[4] * m[8] - m[5] * m[7]) - m[1] * (m[3] * m[8] - m[5] * m[6]) + m[2] * (m[3] * m[7] - m[4] * m[6]); } /////////////////////////////////////////////////////////////////////////////// // inverse 3x3 matrix // If cannot find inverse, set identity matrix /////////////////////////////////////////////////////////////////////////////// Matrix3& Matrix3::invert() { float determinant, invDeterminant; float tmp[9]; tmp[0] = m[4] * m[8] - m[5] * m[7]; tmp[1] = m[2] * m[7] - m[1] * m[8]; tmp[2] = m[1] * m[5] - m[2] * m[4]; tmp[3] = m[5] * m[6] - m[3] * m[8]; tmp[4] = m[0] * m[8] - m[2] * m[6]; tmp[5] = m[2] * m[3] - m[0] * m[5]; tmp[6] = m[3] * m[7] - m[4] * m[6]; tmp[7] = m[1] * m[6] - m[0] * m[7]; tmp[8] = m[0] * m[4] - m[1] * m[3]; // check determinant if it is 0 determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6]; if(fabs(determinant) <= EPSILON) { return identity(); // cannot inverse, make it idenety matrix } // divide by the determinant invDeterminant = 1.0f / determinant; m[0] = invDeterminant * tmp[0]; m[1] = invDeterminant * tmp[1]; m[2] = invDeterminant * tmp[2]; m[3] = invDeterminant * tmp[3]; m[4] = invDeterminant * tmp[4]; m[5] = invDeterminant * tmp[5]; m[6] = invDeterminant * tmp[6]; m[7] = invDeterminant * tmp[7]; m[8] = invDeterminant * tmp[8]; return *this; } /////////////////////////////////////////////////////////////////////////////// // transpose 4x4 matrix /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::transpose() { std::swap(m[1], m[4]); std::swap(m[2], m[8]); std::swap(m[3], m[12]); std::swap(m[6], m[9]); std::swap(m[7], m[13]); std::swap(m[11], m[14]); return *this; } /////////////////////////////////////////////////////////////////////////////// // inverse 4x4 matrix /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::invert() { // If the 4th row is [0,0,0,1] then it is affine matrix and // it has no projective transformation. if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1) this->invertAffine(); else { this->invertGeneral(); /*@@ invertProjective() is not optimized (slower than generic one) if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON) this->invertProjective(); // inverse using matrix partition else this->invertGeneral(); // generalized inverse */ } return *this; } /////////////////////////////////////////////////////////////////////////////// // compute the inverse of 4x4 Euclidean transformation matrix // // Euclidean transformation is translation, rotation, and reflection. // With Euclidean transform, only the position and orientation of the object // will be changed. Euclidean transform does not change the shape of an object // (no scaling). Length and angle are reserved. // // Use inverseAffine() if the matrix has scale and shear transformation. // // M = [ R | T ] // [ --+-- ] (R denotes 3x3 rotation/reflection matrix) // [ 0 | 1 ] (T denotes 1x3 translation matrix) // // y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T // (R is orthogonal, R^-1 = R^T) // // [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix) // [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation) // [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose) /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::invertEuclidean() { // transpose 3x3 rotation matrix part // | R^T | 0 | // | ----+-- | // | 0 | 1 | float tmp; tmp = m[1]; m[1] = m[4]; m[4] = tmp; tmp = m[2]; m[2] = m[8]; m[8] = tmp; tmp = m[6]; m[6] = m[9]; m[9] = tmp; // compute translation part -R^T * T // | 0 | -R^T x | // | --+------- | // | 0 | 0 | float x = m[12]; float y = m[13]; float z = m[14]; m[12] = -(m[0] * x + m[4] * y + m[8] * z); m[13] = -(m[1] * x + m[5] * y + m[9] * z); m[14] = -(m[2] * x + m[6] * y + m[10]* z); // last row should be unchanged (0,0,0,1) return *this; } /////////////////////////////////////////////////////////////////////////////// // compute the inverse of a 4x4 affine transformation matrix // // Affine transformations are generalizations of Euclidean transformations. // Affine transformation includes translation, rotation, reflection, scaling, // and shearing. Length and angle are NOT preserved. // M = [ R | T ] // [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix) // [ 0 | 1 ] (T denotes 1x3 translation matrix) // // y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T // // [ R | T ]-1 [ R^-1 | -R^-1 * T ] // [ --+-- ] = [ -----+---------- ] // [ 0 | 1 ] [ 0 + 1 ] /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::invertAffine() { // R^-1 Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]); r.invert(); m[0] = r[0]; m[1] = r[1]; m[2] = r[2]; m[4] = r[3]; m[5] = r[4]; m[6] = r[5]; m[8] = r[6]; m[9] = r[7]; m[10]= r[8]; // -R^-1 * T float x = m[12]; float y = m[13]; float z = m[14]; m[12] = -(r[0] * x + r[3] * y + r[6] * z); m[13] = -(r[1] * x + r[4] * y + r[7] * z); m[14] = -(r[2] * x + r[5] * y + r[8] * z); // last row should be unchanged (0,0,0,1) //m[3] = m[7] = m[11] = 0.0f; //m[15] = 1.0f; return * this; } /////////////////////////////////////////////////////////////////////////////// // inverse matrix using matrix partitioning (blockwise inverse) // It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where // det(A) != 0. If not, use the generic inverse method // inverse formula. // M = [ A | B ] A, B, C, D are 2x2 matrix blocks // [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)| // [ C | D ] // // M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C' // [ ---+--- ] B' = (A^-1 * B) * -D' // [ C' | D' ] C' = -D' * (C * A^-1) // D' = (D - ((C * A^-1) * B))^-1 // // NOTE: I wrap with () if it it used more than once. // The matrix is invertable even if det(A)=0, so must check det(A) before // calling this function, and use invertGeneric() instead. /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::invertProjective() { // partition Matrix2 a(m[0], m[1], m[4], m[5]); Matrix2 b(m[8], m[9], m[12], m[13]); Matrix2 c(m[2], m[3], m[6], m[7]); Matrix2 d(m[10], m[11], m[14], m[15]); // pre-compute repeated parts a.invert(); // A^-1 Matrix2 ab = a * b; // A^-1 * B Matrix2 ca = c * a; // C * A^-1 Matrix2 cab = ca * b; // C * A^-1 * B Matrix2 dcab = d - cab; // D - C * A^-1 * B // check determinant if |D - C * A^-1 * B| = 0 //NOTE: this function assumes det(A) is already checked. if |A|=0 then, // cannot use this function. float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2]; if(fabs(determinant) <= EPSILON) { return identity(); } // compute D' and -D' Matrix2 d1 = dcab; // (D - C * A^-1 * B) d1.invert(); // (D - C * A^-1 * B)^-1 Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1 // compute C' Matrix2 c1 = d2 * ca; // -D' * (C * A^-1) // compute B' Matrix2 b1 = ab * d2; // (A^-1 * B) * -D' // compute A' Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C' // assemble inverse matrix m[0] = a1[0]; m[4] = a1[2]; /*|*/ m[8] = b1[0]; m[12]= b1[2]; m[1] = a1[1]; m[5] = a1[3]; /*|*/ m[9] = b1[1]; m[13]= b1[3]; /*-----------------------------+-----------------------------*/ m[2] = c1[0]; m[6] = c1[2]; /*|*/ m[10]= d1[0]; m[14]= d1[2]; m[3] = c1[1]; m[7] = c1[3]; /*|*/ m[11]= d1[1]; m[15]= d1[3]; return *this; } /////////////////////////////////////////////////////////////////////////////// // compute the inverse of a general 4x4 matrix using Cramer's Rule // If cannot find inverse, return indentity matrix // M^-1 = adj(M) / det(M) /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::invertGeneral() { // get cofactors of minor matrices float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]); float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]); float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]); float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); // get determinant float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3; if(fabs(determinant) <= EPSILON) { return identity(); } // get rest of cofactors for adj(M) float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]); float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]); float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]); float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]); float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[13],m[14],m[15]); float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[12],m[14],m[15]); float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[12],m[13],m[15]); float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[12],m[13],m[14]); float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[9], m[10],m[11]); float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[8], m[10],m[11]); float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[8], m[9], m[11]); float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[8], m[9], m[10]); // build inverse matrix = adj(M) / det(M) // adjugate of M is the transpose of the cofactor matrix of M float invDeterminant = 1.0f / determinant; m[0] = invDeterminant * cofactor0; m[1] = -invDeterminant * cofactor4; m[2] = invDeterminant * cofactor8; m[3] = -invDeterminant * cofactor12; m[4] = -invDeterminant * cofactor1; m[5] = invDeterminant * cofactor5; m[6] = -invDeterminant * cofactor9; m[7] = invDeterminant * cofactor13; m[8] = invDeterminant * cofactor2; m[9] = -invDeterminant * cofactor6; m[10]= invDeterminant * cofactor10; m[11]= -invDeterminant * cofactor14; m[12]= -invDeterminant * cofactor3; m[13]= invDeterminant * cofactor7; m[14]= -invDeterminant * cofactor11; m[15]= invDeterminant * cofactor15; return *this; } /////////////////////////////////////////////////////////////////////////////// // return determinant of 4x4 matrix /////////////////////////////////////////////////////////////////////////////// float Matrix4::getDeterminant() { return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) - m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) + m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) - m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); } /////////////////////////////////////////////////////////////////////////////// // compute cofactor of 3x3 minor matrix without sign // input params are 9 elements of the minor matrix // NOTE: The caller must know its sign. /////////////////////////////////////////////////////////////////////////////// float Matrix4::getCofactor(float m0, float m1, float m2, float m3, float m4, float m5, float m6, float m7, float m8) { return m0 * (m4 * m8 - m5 * m7) - m1 * (m3 * m8 - m5 * m6) + m2 * (m3 * m7 - m4 * m6); } /////////////////////////////////////////////////////////////////////////////// // translate this matrix by (x, y, z) /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::translate(const Vector3& v) { return translate(v.x, v.y, v.z); } Matrix4& Matrix4::translate(float x, float y, float z) { m[0] += m[3] * x; m[4] += m[7] * x; m[8] += m[11]* x; m[12]+= m[15]* x; m[1] += m[3] * y; m[5] += m[7] * y; m[9] += m[11]* y; m[13]+= m[15]* y; m[2] += m[3] * z; m[6] += m[7] * z; m[10]+= m[11]* z; m[14]+= m[15]* z; return *this; } /////////////////////////////////////////////////////////////////////////////// // uniform scale /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::scale(float s) { return scale(s, s, s); } Matrix4& Matrix4::scale(float x, float y, float z) { m[0] *= x; m[4] *= x; m[8] *= x; m[12] *= x; m[1] *= y; m[5] *= y; m[9] *= y; m[13] *= y; m[2] *= z; m[6] *= z; m[10]*= z; m[14] *= z; return *this; } /////////////////////////////////////////////////////////////////////////////// // build a rotation matrix with given angle(degree) and rotation axis, then // multiply it with this object /////////////////////////////////////////////////////////////////////////////// Matrix4& Matrix4::rotate(float angle, const Vector3& axis) { return rotate(angle, axis.x, axis.y, axis.z); } Matrix4& Matrix4::rotate(float angle, float x, float y, float z) { float c = cosf(angle * DEG2RAD); // cosine float s = sinf(angle * DEG2RAD); // sine float c1 = 1.0f - c; // 1 - c float m0 = m[0], m4 = m[4], m8 = m[8], m12= m[12], m1 = m[1], m5 = m[5], m9 = m[9], m13= m[13], m2 = m[2], m6 = m[6], m10= m[10], m14= m[14]; // build rotation matrix float r0 = x * x * c1 + c; float r1 = x * y * c1 + z * s; float r2 = x * z * c1 - y * s; float r4 = x * y * c1 - z * s; float r5 = y * y * c1 + c; float r6 = y * z * c1 + x * s; float r8 = x * z * c1 + y * s; float r9 = y * z * c1 - x * s; float r10= z * z * c1 + c; // multiply rotation matrix m[0] = r0 * m0 + r4 * m1 + r8 * m2; m[1] = r1 * m0 + r5 * m1 + r9 * m2; m[2] = r2 * m0 + r6 * m1 + r10* m2; m[4] = r0 * m4 + r4 * m5 + r8 * m6; m[5] = r1 * m4 + r5 * m5 + r9 * m6; m[6] = r2 * m4 + r6 * m5 + r10* m6; m[8] = r0 * m8 + r4 * m9 + r8 * m10; m[9] = r1 * m8 + r5 * m9 + r9 * m10; m[10]= r2 * m8 + r6 * m9 + r10* m10; m[12]= r0 * m12+ r4 * m13+ r8 * m14; m[13]= r1 * m12+ r5 * m13+ r9 * m14; m[14]= r2 * m12+ r6 * m13+ r10* m14; return *this; } Matrix4& Matrix4::rotateX(float angle) { float c = cosf(angle * DEG2RAD); float s = sinf(angle * DEG2RAD); float m1 = m[1], m2 = m[2], m5 = m[5], m6 = m[6], m9 = m[9], m10= m[10], m13= m[13], m14= m[14]; m[1] = m1 * c + m2 *-s; m[2] = m1 * s + m2 * c; m[5] = m5 * c + m6 *-s; m[6] = m5 * s + m6 * c; m[9] = m9 * c + m10*-s; m[10]= m9 * s + m10* c; m[13]= m13* c + m14*-s; m[14]= m13* s + m14* c; return *this; } Matrix4& Matrix4::rotateY(float angle) { float c = cosf(angle * DEG2RAD); float s = sinf(angle * DEG2RAD); float m0 = m[0], m2 = m[2], m4 = m[4], m6 = m[6], m8 = m[8], m10= m[10], m12= m[12], m14= m[14]; m[0] = m0 * c + m2 * s; m[2] = m0 *-s + m2 * c; m[4] = m4 * c + m6 * s; m[6] = m4 *-s + m6 * c; m[8] = m8 * c + m10* s; m[10]= m8 *-s + m10* c; m[12]= m12* c + m14* s; m[14]= m12*-s + m14* c; return *this; } Matrix4& Matrix4::rotateZ(float angle) { float c = cosf(angle * DEG2RAD); float s = sinf(angle * DEG2RAD); float m0 = m[0], m1 = m[1], m4 = m[4], m5 = m[5], m8 = m[8], m9 = m[9], m12= m[12], m13= m[13]; m[0] = m0 * c + m1 *-s; m[1] = m0 * s + m1 * c; m[4] = m4 * c + m5 *-s; m[5] = m4 * s + m5 * c; m[8] = m8 * c + m9 *-s; m[9] = m8 * s + m9 * c; m[12]= m12* c + m13*-s; m[13]= m12* s + m13* c; return *this; }