diff options
Diffstat (limited to 'vendor/golang.org/x/image/tiff')
-rw-r--r-- | vendor/golang.org/x/image/tiff/buffer.go | 69 | ||||
-rw-r--r-- | vendor/golang.org/x/image/tiff/compress.go | 58 | ||||
-rw-r--r-- | vendor/golang.org/x/image/tiff/consts.go | 133 | ||||
-rw-r--r-- | vendor/golang.org/x/image/tiff/lzw/reader.go | 272 | ||||
-rw-r--r-- | vendor/golang.org/x/image/tiff/reader.go | 684 | ||||
-rw-r--r-- | vendor/golang.org/x/image/tiff/writer.go | 438 |
6 files changed, 1654 insertions, 0 deletions
diff --git a/vendor/golang.org/x/image/tiff/buffer.go b/vendor/golang.org/x/image/tiff/buffer.go new file mode 100644 index 0000000..d1801be --- /dev/null +++ b/vendor/golang.org/x/image/tiff/buffer.go @@ -0,0 +1,69 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package tiff + +import "io" + +// buffer buffers an io.Reader to satisfy io.ReaderAt. +type buffer struct { + r io.Reader + buf []byte +} + +// fill reads data from b.r until the buffer contains at least end bytes. +func (b *buffer) fill(end int) error { + m := len(b.buf) + if end > m { + if end > cap(b.buf) { + newcap := 1024 + for newcap < end { + newcap *= 2 + } + newbuf := make([]byte, end, newcap) + copy(newbuf, b.buf) + b.buf = newbuf + } else { + b.buf = b.buf[:end] + } + if n, err := io.ReadFull(b.r, b.buf[m:end]); err != nil { + end = m + n + b.buf = b.buf[:end] + return err + } + } + return nil +} + +func (b *buffer) ReadAt(p []byte, off int64) (int, error) { + o := int(off) + end := o + len(p) + if int64(end) != off+int64(len(p)) { + return 0, io.ErrUnexpectedEOF + } + + err := b.fill(end) + return copy(p, b.buf[o:end]), err +} + +// Slice returns a slice of the underlying buffer. The slice contains +// n bytes starting at offset off. +func (b *buffer) Slice(off, n int) ([]byte, error) { + end := off + n + if err := b.fill(end); err != nil { + return nil, err + } + return b.buf[off:end], nil +} + +// newReaderAt converts an io.Reader into an io.ReaderAt. +func newReaderAt(r io.Reader) io.ReaderAt { + if ra, ok := r.(io.ReaderAt); ok { + return ra + } + return &buffer{ + r: r, + buf: make([]byte, 0, 1024), + } +} diff --git a/vendor/golang.org/x/image/tiff/compress.go b/vendor/golang.org/x/image/tiff/compress.go new file mode 100644 index 0000000..3f176f0 --- /dev/null +++ b/vendor/golang.org/x/image/tiff/compress.go @@ -0,0 +1,58 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package tiff + +import ( + "bufio" + "io" +) + +type byteReader interface { + io.Reader + io.ByteReader +} + +// unpackBits decodes the PackBits-compressed data in src and returns the +// uncompressed data. +// +// The PackBits compression format is described in section 9 (p. 42) +// of the TIFF spec. +func unpackBits(r io.Reader) ([]byte, error) { + buf := make([]byte, 128) + dst := make([]byte, 0, 1024) + br, ok := r.(byteReader) + if !ok { + br = bufio.NewReader(r) + } + + for { + b, err := br.ReadByte() + if err != nil { + if err == io.EOF { + return dst, nil + } + return nil, err + } + code := int(int8(b)) + switch { + case code >= 0: + n, err := io.ReadFull(br, buf[:code+1]) + if err != nil { + return nil, err + } + dst = append(dst, buf[:n]...) + case code == -128: + // No-op. + default: + if b, err = br.ReadByte(); err != nil { + return nil, err + } + for j := 0; j < 1-code; j++ { + buf[j] = b + } + dst = append(dst, buf[:1-code]...) + } + } +} diff --git a/vendor/golang.org/x/image/tiff/consts.go b/vendor/golang.org/x/image/tiff/consts.go new file mode 100644 index 0000000..3c51a70 --- /dev/null +++ b/vendor/golang.org/x/image/tiff/consts.go @@ -0,0 +1,133 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package tiff + +// A tiff image file contains one or more images. The metadata +// of each image is contained in an Image File Directory (IFD), +// which contains entries of 12 bytes each and is described +// on page 14-16 of the specification. An IFD entry consists of +// +// - a tag, which describes the signification of the entry, +// - the data type and length of the entry, +// - the data itself or a pointer to it if it is more than 4 bytes. +// +// The presence of a length means that each IFD is effectively an array. + +const ( + leHeader = "II\x2A\x00" // Header for little-endian files. + beHeader = "MM\x00\x2A" // Header for big-endian files. + + ifdLen = 12 // Length of an IFD entry in bytes. +) + +// Data types (p. 14-16 of the spec). +const ( + dtByte = 1 + dtASCII = 2 + dtShort = 3 + dtLong = 4 + dtRational = 5 +) + +// The length of one instance of each data type in bytes. +var lengths = [...]uint32{0, 1, 1, 2, 4, 8} + +// Tags (see p. 28-41 of the spec). +const ( + tImageWidth = 256 + tImageLength = 257 + tBitsPerSample = 258 + tCompression = 259 + tPhotometricInterpretation = 262 + + tStripOffsets = 273 + tSamplesPerPixel = 277 + tRowsPerStrip = 278 + tStripByteCounts = 279 + + tTileWidth = 322 + tTileLength = 323 + tTileOffsets = 324 + tTileByteCounts = 325 + + tXResolution = 282 + tYResolution = 283 + tResolutionUnit = 296 + + tPredictor = 317 + tColorMap = 320 + tExtraSamples = 338 + tSampleFormat = 339 +) + +// Compression types (defined in various places in the spec and supplements). +const ( + cNone = 1 + cCCITT = 2 + cG3 = 3 // Group 3 Fax. + cG4 = 4 // Group 4 Fax. + cLZW = 5 + cJPEGOld = 6 // Superseded by cJPEG. + cJPEG = 7 + cDeflate = 8 // zlib compression. + cPackBits = 32773 + cDeflateOld = 32946 // Superseded by cDeflate. +) + +// Photometric interpretation values (see p. 37 of the spec). +const ( + pWhiteIsZero = 0 + pBlackIsZero = 1 + pRGB = 2 + pPaletted = 3 + pTransMask = 4 // transparency mask + pCMYK = 5 + pYCbCr = 6 + pCIELab = 8 +) + +// Values for the tPredictor tag (page 64-65 of the spec). +const ( + prNone = 1 + prHorizontal = 2 +) + +// Values for the tResolutionUnit tag (page 18). +const ( + resNone = 1 + resPerInch = 2 // Dots per inch. + resPerCM = 3 // Dots per centimeter. +) + +// imageMode represents the mode of the image. +type imageMode int + +const ( + mBilevel imageMode = iota + mPaletted + mGray + mGrayInvert + mRGB + mRGBA + mNRGBA +) + +// CompressionType describes the type of compression used in Options. +type CompressionType int + +const ( + Uncompressed CompressionType = iota + Deflate +) + +// specValue returns the compression type constant from the TIFF spec that +// is equivalent to c. +func (c CompressionType) specValue() uint32 { + switch c { + case Deflate: + return cDeflate + } + return cNone +} diff --git a/vendor/golang.org/x/image/tiff/lzw/reader.go b/vendor/golang.org/x/image/tiff/lzw/reader.go new file mode 100644 index 0000000..51ae39f --- /dev/null +++ b/vendor/golang.org/x/image/tiff/lzw/reader.go @@ -0,0 +1,272 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package lzw implements the Lempel-Ziv-Welch compressed data format, +// described in T. A. Welch, ``A Technique for High-Performance Data +// Compression'', Computer, 17(6) (June 1984), pp 8-19. +// +// In particular, it implements LZW as used by the TIFF file format, including +// an "off by one" algorithmic difference when compared to standard LZW. +package lzw // import "golang.org/x/image/tiff/lzw" + +/* +This file was branched from src/pkg/compress/lzw/reader.go in the +standard library. Differences from the original are marked with "NOTE". + +The tif_lzw.c file in the libtiff C library has this comment: + +---- +The 5.0 spec describes a different algorithm than Aldus +implements. Specifically, Aldus does code length transitions +one code earlier than should be done (for real LZW). +Earlier versions of this library implemented the correct +LZW algorithm, but emitted codes in a bit order opposite +to the TIFF spec. Thus, to maintain compatibility w/ Aldus +we interpret MSB-LSB ordered codes to be images written w/ +old versions of this library, but otherwise adhere to the +Aldus "off by one" algorithm. +---- + +The Go code doesn't read (invalid) TIFF files written by old versions of +libtiff, but the LZW algorithm in this package still differs from the one in +Go's standard package library to accomodate this "off by one" in valid TIFFs. +*/ + +import ( + "bufio" + "errors" + "fmt" + "io" +) + +// Order specifies the bit ordering in an LZW data stream. +type Order int + +const ( + // LSB means Least Significant Bits first, as used in the GIF file format. + LSB Order = iota + // MSB means Most Significant Bits first, as used in the TIFF and PDF + // file formats. + MSB +) + +const ( + maxWidth = 12 + decoderInvalidCode = 0xffff + flushBuffer = 1 << maxWidth +) + +// decoder is the state from which the readXxx method converts a byte +// stream into a code stream. +type decoder struct { + r io.ByteReader + bits uint32 + nBits uint + width uint + read func(*decoder) (uint16, error) // readLSB or readMSB + litWidth int // width in bits of literal codes + err error + + // The first 1<<litWidth codes are literal codes. + // The next two codes mean clear and EOF. + // Other valid codes are in the range [lo, hi] where lo := clear + 2, + // with the upper bound incrementing on each code seen. + // overflow is the code at which hi overflows the code width. NOTE: TIFF's LZW is "off by one". + // last is the most recently seen code, or decoderInvalidCode. + clear, eof, hi, overflow, last uint16 + + // Each code c in [lo, hi] expands to two or more bytes. For c != hi: + // suffix[c] is the last of these bytes. + // prefix[c] is the code for all but the last byte. + // This code can either be a literal code or another code in [lo, c). + // The c == hi case is a special case. + suffix [1 << maxWidth]uint8 + prefix [1 << maxWidth]uint16 + + // output is the temporary output buffer. + // Literal codes are accumulated from the start of the buffer. + // Non-literal codes decode to a sequence of suffixes that are first + // written right-to-left from the end of the buffer before being copied + // to the start of the buffer. + // It is flushed when it contains >= 1<<maxWidth bytes, + // so that there is always room to decode an entire code. + output [2 * 1 << maxWidth]byte + o int // write index into output + toRead []byte // bytes to return from Read +} + +// readLSB returns the next code for "Least Significant Bits first" data. +func (d *decoder) readLSB() (uint16, error) { + for d.nBits < d.width { + x, err := d.r.ReadByte() + if err != nil { + return 0, err + } + d.bits |= uint32(x) << d.nBits + d.nBits += 8 + } + code := uint16(d.bits & (1<<d.width - 1)) + d.bits >>= d.width + d.nBits -= d.width + return code, nil +} + +// readMSB returns the next code for "Most Significant Bits first" data. +func (d *decoder) readMSB() (uint16, error) { + for d.nBits < d.width { + x, err := d.r.ReadByte() + if err != nil { + return 0, err + } + d.bits |= uint32(x) << (24 - d.nBits) + d.nBits += 8 + } + code := uint16(d.bits >> (32 - d.width)) + d.bits <<= d.width + d.nBits -= d.width + return code, nil +} + +func (d *decoder) Read(b []byte) (int, error) { + for { + if len(d.toRead) > 0 { + n := copy(b, d.toRead) + d.toRead = d.toRead[n:] + return n, nil + } + if d.err != nil { + return 0, d.err + } + d.decode() + } +} + +// decode decompresses bytes from r and leaves them in d.toRead. +// read specifies how to decode bytes into codes. +// litWidth is the width in bits of literal codes. +func (d *decoder) decode() { + // Loop over the code stream, converting codes into decompressed bytes. +loop: + for { + code, err := d.read(d) + if err != nil { + if err == io.EOF { + err = io.ErrUnexpectedEOF + } + d.err = err + break + } + switch { + case code < d.clear: + // We have a literal code. + d.output[d.o] = uint8(code) + d.o++ + if d.last != decoderInvalidCode { + // Save what the hi code expands to. + d.suffix[d.hi] = uint8(code) + d.prefix[d.hi] = d.last + } + case code == d.clear: + d.width = 1 + uint(d.litWidth) + d.hi = d.eof + d.overflow = 1 << d.width + d.last = decoderInvalidCode + continue + case code == d.eof: + d.err = io.EOF + break loop + case code <= d.hi: + c, i := code, len(d.output)-1 + if code == d.hi { + // code == hi is a special case which expands to the last expansion + // followed by the head of the last expansion. To find the head, we walk + // the prefix chain until we find a literal code. + c = d.last + for c >= d.clear { + c = d.prefix[c] + } + d.output[i] = uint8(c) + i-- + c = d.last + } + // Copy the suffix chain into output and then write that to w. + for c >= d.clear { + d.output[i] = d.suffix[c] + i-- + c = d.prefix[c] + } + d.output[i] = uint8(c) + d.o += copy(d.output[d.o:], d.output[i:]) + if d.last != decoderInvalidCode { + // Save what the hi code expands to. + d.suffix[d.hi] = uint8(c) + d.prefix[d.hi] = d.last + } + default: + d.err = errors.New("lzw: invalid code") + break loop + } + d.last, d.hi = code, d.hi+1 + if d.hi+1 >= d.overflow { // NOTE: the "+1" is where TIFF's LZW differs from the standard algorithm. + if d.width == maxWidth { + d.last = decoderInvalidCode + } else { + d.width++ + d.overflow <<= 1 + } + } + if d.o >= flushBuffer { + break + } + } + // Flush pending output. + d.toRead = d.output[:d.o] + d.o = 0 +} + +var errClosed = errors.New("lzw: reader/writer is closed") + +func (d *decoder) Close() error { + d.err = errClosed // in case any Reads come along + return nil +} + +// NewReader creates a new io.ReadCloser. +// Reads from the returned io.ReadCloser read and decompress data from r. +// If r does not also implement io.ByteReader, +// the decompressor may read more data than necessary from r. +// It is the caller's responsibility to call Close on the ReadCloser when +// finished reading. +// The number of bits to use for literal codes, litWidth, must be in the +// range [2,8] and is typically 8. It must equal the litWidth +// used during compression. +func NewReader(r io.Reader, order Order, litWidth int) io.ReadCloser { + d := new(decoder) + switch order { + case LSB: + d.read = (*decoder).readLSB + case MSB: + d.read = (*decoder).readMSB + default: + d.err = errors.New("lzw: unknown order") + return d + } + if litWidth < 2 || 8 < litWidth { + d.err = fmt.Errorf("lzw: litWidth %d out of range", litWidth) + return d + } + if br, ok := r.(io.ByteReader); ok { + d.r = br + } else { + d.r = bufio.NewReader(r) + } + d.litWidth = litWidth + d.width = 1 + uint(litWidth) + d.clear = uint16(1) << uint(litWidth) + d.eof, d.hi = d.clear+1, d.clear+1 + d.overflow = uint16(1) << d.width + d.last = decoderInvalidCode + + return d +} diff --git a/vendor/golang.org/x/image/tiff/reader.go b/vendor/golang.org/x/image/tiff/reader.go new file mode 100644 index 0000000..8a941c1 --- /dev/null +++ b/vendor/golang.org/x/image/tiff/reader.go @@ -0,0 +1,684 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package tiff implements a TIFF image decoder and encoder. +// +// The TIFF specification is at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf +package tiff // import "golang.org/x/image/tiff" + +import ( + "compress/zlib" + "encoding/binary" + "fmt" + "image" + "image/color" + "io" + "io/ioutil" + "math" + + "golang.org/x/image/tiff/lzw" +) + +// A FormatError reports that the input is not a valid TIFF image. +type FormatError string + +func (e FormatError) Error() string { + return "tiff: invalid format: " + string(e) +} + +// An UnsupportedError reports that the input uses a valid but +// unimplemented feature. +type UnsupportedError string + +func (e UnsupportedError) Error() string { + return "tiff: unsupported feature: " + string(e) +} + +var errNoPixels = FormatError("not enough pixel data") + +type decoder struct { + r io.ReaderAt + byteOrder binary.ByteOrder + config image.Config + mode imageMode + bpp uint + features map[int][]uint + palette []color.Color + + buf []byte + off int // Current offset in buf. + v uint32 // Buffer value for reading with arbitrary bit depths. + nbits uint // Remaining number of bits in v. +} + +// firstVal returns the first uint of the features entry with the given tag, +// or 0 if the tag does not exist. +func (d *decoder) firstVal(tag int) uint { + f := d.features[tag] + if len(f) == 0 { + return 0 + } + return f[0] +} + +// ifdUint decodes the IFD entry in p, which must be of the Byte, Short +// or Long type, and returns the decoded uint values. +func (d *decoder) ifdUint(p []byte) (u []uint, err error) { + var raw []byte + if len(p) < ifdLen { + return nil, FormatError("bad IFD entry") + } + + datatype := d.byteOrder.Uint16(p[2:4]) + if dt := int(datatype); dt <= 0 || dt >= len(lengths) { + return nil, UnsupportedError("IFD entry datatype") + } + + count := d.byteOrder.Uint32(p[4:8]) + if count > math.MaxInt32/lengths[datatype] { + return nil, FormatError("IFD data too large") + } + if datalen := lengths[datatype] * count; datalen > 4 { + // The IFD contains a pointer to the real value. + raw = make([]byte, datalen) + _, err = d.r.ReadAt(raw, int64(d.byteOrder.Uint32(p[8:12]))) + } else { + raw = p[8 : 8+datalen] + } + if err != nil { + return nil, err + } + + u = make([]uint, count) + switch datatype { + case dtByte: + for i := uint32(0); i < count; i++ { + u[i] = uint(raw[i]) + } + case dtShort: + for i := uint32(0); i < count; i++ { + u[i] = uint(d.byteOrder.Uint16(raw[2*i : 2*(i+1)])) + } + case dtLong: + for i := uint32(0); i < count; i++ { + u[i] = uint(d.byteOrder.Uint32(raw[4*i : 4*(i+1)])) + } + default: + return nil, UnsupportedError("data type") + } + return u, nil +} + +// parseIFD decides whether the the IFD entry in p is "interesting" and +// stows away the data in the decoder. It returns the tag number of the +// entry and an error, if any. +func (d *decoder) parseIFD(p []byte) (int, error) { + tag := d.byteOrder.Uint16(p[0:2]) + switch tag { + case tBitsPerSample, + tExtraSamples, + tPhotometricInterpretation, + tCompression, + tPredictor, + tStripOffsets, + tStripByteCounts, + tRowsPerStrip, + tTileWidth, + tTileLength, + tTileOffsets, + tTileByteCounts, + tImageLength, + tImageWidth: + val, err := d.ifdUint(p) + if err != nil { + return 0, err + } + d.features[int(tag)] = val + case tColorMap: + val, err := d.ifdUint(p) + if err != nil { + return 0, err + } + numcolors := len(val) / 3 + if len(val)%3 != 0 || numcolors <= 0 || numcolors > 256 { + return 0, FormatError("bad ColorMap length") + } + d.palette = make([]color.Color, numcolors) + for i := 0; i < numcolors; i++ { + d.palette[i] = color.RGBA64{ + uint16(val[i]), + uint16(val[i+numcolors]), + uint16(val[i+2*numcolors]), + 0xffff, + } + } + case tSampleFormat: + // Page 27 of the spec: If the SampleFormat is present and + // the value is not 1 [= unsigned integer data], a Baseline + // TIFF reader that cannot handle the SampleFormat value + // must terminate the import process gracefully. + val, err := d.ifdUint(p) + if err != nil { + return 0, err + } + for _, v := range val { + if v != 1 { + return 0, UnsupportedError("sample format") + } + } + } + return int(tag), nil +} + +// readBits reads n bits from the internal buffer starting at the current offset. +func (d *decoder) readBits(n uint) (v uint32, ok bool) { + for d.nbits < n { + d.v <<= 8 + if d.off >= len(d.buf) { + return 0, false + } + d.v |= uint32(d.buf[d.off]) + d.off++ + d.nbits += 8 + } + d.nbits -= n + rv := d.v >> d.nbits + d.v &^= rv << d.nbits + return rv, true +} + +// flushBits discards the unread bits in the buffer used by readBits. +// It is used at the end of a line. +func (d *decoder) flushBits() { + d.v = 0 + d.nbits = 0 +} + +// minInt returns the smaller of x or y. +func minInt(a, b int) int { + if a <= b { + return a + } + return b +} + +// decode decodes the raw data of an image. +// It reads from d.buf and writes the strip or tile into dst. +func (d *decoder) decode(dst image.Image, xmin, ymin, xmax, ymax int) error { + d.off = 0 + + // Apply horizontal predictor if necessary. + // In this case, p contains the color difference to the preceding pixel. + // See page 64-65 of the spec. + if d.firstVal(tPredictor) == prHorizontal { + switch d.bpp { + case 16: + var off int + n := 2 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel + for y := ymin; y < ymax; y++ { + off += n + for x := 0; x < (xmax-xmin-1)*n; x += 2 { + if off+2 > len(d.buf) { + return errNoPixels + } + v0 := d.byteOrder.Uint16(d.buf[off-n : off-n+2]) + v1 := d.byteOrder.Uint16(d.buf[off : off+2]) + d.byteOrder.PutUint16(d.buf[off:off+2], v1+v0) + off += 2 + } + } + case 8: + var off int + n := 1 * len(d.features[tBitsPerSample]) // bytes per sample times samples per pixel + for y := ymin; y < ymax; y++ { + off += n + for x := 0; x < (xmax-xmin-1)*n; x++ { + if off >= len(d.buf) { + return errNoPixels + } + d.buf[off] += d.buf[off-n] + off++ + } + } + case 1: + return UnsupportedError("horizontal predictor with 1 BitsPerSample") + } + } + + rMaxX := minInt(xmax, dst.Bounds().Max.X) + rMaxY := minInt(ymax, dst.Bounds().Max.Y) + switch d.mode { + case mGray, mGrayInvert: + if d.bpp == 16 { + img := dst.(*image.Gray16) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + if d.off+2 > len(d.buf) { + return errNoPixels + } + v := d.byteOrder.Uint16(d.buf[d.off : d.off+2]) + d.off += 2 + if d.mode == mGrayInvert { + v = 0xffff - v + } + img.SetGray16(x, y, color.Gray16{v}) + } + if rMaxX == img.Bounds().Max.X { + d.off += 2 * (xmax - img.Bounds().Max.X) + } + } + } else { + img := dst.(*image.Gray) + max := uint32((1 << d.bpp) - 1) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + v, ok := d.readBits(d.bpp) + if !ok { + return errNoPixels + } + v = v * 0xff / max + if d.mode == mGrayInvert { + v = 0xff - v + } + img.SetGray(x, y, color.Gray{uint8(v)}) + } + d.flushBits() + } + } + case mPaletted: + img := dst.(*image.Paletted) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + v, ok := d.readBits(d.bpp) + if !ok { + return errNoPixels + } + img.SetColorIndex(x, y, uint8(v)) + } + d.flushBits() + } + case mRGB: + if d.bpp == 16 { + img := dst.(*image.RGBA64) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + if d.off+6 > len(d.buf) { + return errNoPixels + } + r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2]) + g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4]) + b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6]) + d.off += 6 + img.SetRGBA64(x, y, color.RGBA64{r, g, b, 0xffff}) + } + } + } else { + img := dst.(*image.RGBA) + for y := ymin; y < rMaxY; y++ { + min := img.PixOffset(xmin, y) + max := img.PixOffset(rMaxX, y) + off := (y - ymin) * (xmax - xmin) * 3 + for i := min; i < max; i += 4 { + if off+3 > len(d.buf) { + return errNoPixels + } + img.Pix[i+0] = d.buf[off+0] + img.Pix[i+1] = d.buf[off+1] + img.Pix[i+2] = d.buf[off+2] + img.Pix[i+3] = 0xff + off += 3 + } + } + } + case mNRGBA: + if d.bpp == 16 { + img := dst.(*image.NRGBA64) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + if d.off+8 > len(d.buf) { + return errNoPixels + } + r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2]) + g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4]) + b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6]) + a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8]) + d.off += 8 + img.SetNRGBA64(x, y, color.NRGBA64{r, g, b, a}) + } + } + } else { + img := dst.(*image.NRGBA) + for y := ymin; y < rMaxY; y++ { + min := img.PixOffset(xmin, y) + max := img.PixOffset(rMaxX, y) + i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4 + if i1 > len(d.buf) { + return errNoPixels + } + copy(img.Pix[min:max], d.buf[i0:i1]) + } + } + case mRGBA: + if d.bpp == 16 { + img := dst.(*image.RGBA64) + for y := ymin; y < rMaxY; y++ { + for x := xmin; x < rMaxX; x++ { + if d.off+8 > len(d.buf) { + return errNoPixels + } + r := d.byteOrder.Uint16(d.buf[d.off+0 : d.off+2]) + g := d.byteOrder.Uint16(d.buf[d.off+2 : d.off+4]) + b := d.byteOrder.Uint16(d.buf[d.off+4 : d.off+6]) + a := d.byteOrder.Uint16(d.buf[d.off+6 : d.off+8]) + d.off += 8 + img.SetRGBA64(x, y, color.RGBA64{r, g, b, a}) + } + } + } else { + img := dst.(*image.RGBA) + for y := ymin; y < rMaxY; y++ { + min := img.PixOffset(xmin, y) + max := img.PixOffset(rMaxX, y) + i0, i1 := (y-ymin)*(xmax-xmin)*4, (y-ymin+1)*(xmax-xmin)*4 + if i1 > len(d.buf) { + return errNoPixels + } + copy(img.Pix[min:max], d.buf[i0:i1]) + } + } + } + + return nil +} + +func newDecoder(r io.Reader) (*decoder, error) { + d := &decoder{ + r: newReaderAt(r), + features: make(map[int][]uint), + } + + p := make([]byte, 8) + if _, err := d.r.ReadAt(p, 0); err != nil { + return nil, err + } + switch string(p[0:4]) { + case leHeader: + d.byteOrder = binary.LittleEndian + case beHeader: + d.byteOrder = binary.BigEndian + default: + return nil, FormatError("malformed header") + } + + ifdOffset := int64(d.byteOrder.Uint32(p[4:8])) + + // The first two bytes contain the number of entries (12 bytes each). + if _, err := d.r.ReadAt(p[0:2], ifdOffset); err != nil { + return nil, err + } + numItems := int(d.byteOrder.Uint16(p[0:2])) + + // All IFD entries are read in one chunk. + p = make([]byte, ifdLen*numItems) + if _, err := d.r.ReadAt(p, ifdOffset+2); err != nil { + return nil, err + } + + prevTag := -1 + for i := 0; i < len(p); i += ifdLen { + tag, err := d.parseIFD(p[i : i+ifdLen]) + if err != nil { + return nil, err + } + if tag <= prevTag { + return nil, FormatError("tags are not sorted in ascending order") + } + prevTag = tag + } + + d.config.Width = int(d.firstVal(tImageWidth)) + d.config.Height = int(d.firstVal(tImageLength)) + + if _, ok := d.features[tBitsPerSample]; !ok { + return nil, FormatError("BitsPerSample tag missing") + } + d.bpp = d.firstVal(tBitsPerSample) + switch d.bpp { + case 0: + return nil, FormatError("BitsPerSample must not be 0") + case 1, 8, 16: + // Nothing to do, these are accepted by this implementation. + default: + return nil, UnsupportedError(fmt.Sprintf("BitsPerSample of %v", d.bpp)) + } + + // Determine the image mode. + switch d.firstVal(tPhotometricInterpretation) { + case pRGB: + if d.bpp == 16 { + for _, b := range d.features[tBitsPerSample] { + if b != 16 { + return nil, FormatError("wrong number of samples for 16bit RGB") + } + } + } else { + for _, b := range d.features[tBitsPerSample] { + if b != 8 { + return nil, FormatError("wrong number of samples for 8bit RGB") + } + } + } + // RGB images normally have 3 samples per pixel. + // If there are more, ExtraSamples (p. 31-32 of the spec) + // gives their meaning (usually an alpha channel). + // + // This implementation does not support extra samples + // of an unspecified type. + switch len(d.features[tBitsPerSample]) { + case 3: + d.mode = mRGB + if d.bpp == 16 { + d.config.ColorModel = color.RGBA64Model + } else { + d.config.ColorModel = color.RGBAModel + } + case 4: + switch d.firstVal(tExtraSamples) { + case 1: + d.mode = mRGBA + if d.bpp == 16 { + d.config.ColorModel = color.RGBA64Model + } else { + d.config.ColorModel = color.RGBAModel + } + case 2: + d.mode = mNRGBA + if d.bpp == 16 { + d.config.ColorModel = color.NRGBA64Model + } else { + d.config.ColorModel = color.NRGBAModel + } + default: + return nil, FormatError("wrong number of samples for RGB") + } + default: + return nil, FormatError("wrong number of samples for RGB") + } + case pPaletted: + d.mode = mPaletted + d.config.ColorModel = color.Palette(d.palette) + case pWhiteIsZero: + d.mode = mGrayInvert + if d.bpp == 16 { + d.config.ColorModel = color.Gray16Model + } else { + d.config.ColorModel = color.GrayModel + } + case pBlackIsZero: + d.mode = mGray + if d.bpp == 16 { + d.config.ColorModel = color.Gray16Model + } else { + d.config.ColorModel = color.GrayModel + } + default: + return nil, UnsupportedError("color model") + } + + return d, nil +} + +// DecodeConfig returns the color model and dimensions of a TIFF image without +// decoding the entire image. +func DecodeConfig(r io.Reader) (image.Config, error) { + d, err := newDecoder(r) + if err != nil { + return image.Config{}, err + } + return d.config, nil +} + +// Decode reads a TIFF image from r and returns it as an image.Image. +// The type of Image returned depends on the contents of the TIFF. +func Decode(r io.Reader) (img image.Image, err error) { + d, err := newDecoder(r) + if err != nil { + return + } + + blockPadding := false + blockWidth := d.config.Width + blockHeight := d.config.Height + blocksAcross := 1 + blocksDown := 1 + + if d.config.Width == 0 { + blocksAcross = 0 + } + if d.config.Height == 0 { + blocksDown = 0 + } + + var blockOffsets, blockCounts []uint + + if int(d.firstVal(tTileWidth)) != 0 { + blockPadding = true + + blockWidth = int(d.firstVal(tTileWidth)) + blockHeight = int(d.firstVal(tTileLength)) + + if blockWidth != 0 { + blocksAcross = (d.config.Width + blockWidth - 1) / blockWidth + } + if blockHeight != 0 { + blocksDown = (d.config.Height + blockHeight - 1) / blockHeight + } + + blockCounts = d.features[tTileByteCounts] + blockOffsets = d.features[tTileOffsets] + + } else { + if int(d.firstVal(tRowsPerStrip)) != 0 { + blockHeight = int(d.firstVal(tRowsPerStrip)) + } + + if blockHeight != 0 { + blocksDown = (d.config.Height + blockHeight - 1) / blockHeight + } + + blockOffsets = d.features[tStripOffsets] + blockCounts = d.features[tStripByteCounts] + } + + // Check if we have the right number of strips/tiles, offsets and counts. + if n := blocksAcross * blocksDown; len(blockOffsets) < n || len(blockCounts) < n { + return nil, FormatError("inconsistent header") + } + + imgRect := image.Rect(0, 0, d.config.Width, d.config.Height) + switch d.mode { + case mGray, mGrayInvert: + if d.bpp == 16 { + img = image.NewGray16(imgRect) + } else { + img = image.NewGray(imgRect) + } + case mPaletted: + img = image.NewPaletted(imgRect, d.palette) + case mNRGBA: + if d.bpp == 16 { + img = image.NewNRGBA64(imgRect) + } else { + img = image.NewNRGBA(imgRect) + } + case mRGB, mRGBA: + if d.bpp == 16 { + img = image.NewRGBA64(imgRect) + } else { + img = image.NewRGBA(imgRect) + } + } + + for i := 0; i < blocksAcross; i++ { + blkW := blockWidth + if !blockPadding && i == blocksAcross-1 && d.config.Width%blockWidth != 0 { + blkW = d.config.Width % blockWidth + } + for j := 0; j < blocksDown; j++ { + blkH := blockHeight + if !blockPadding && j == blocksDown-1 && d.config.Height%blockHeight != 0 { + blkH = d.config.Height % blockHeight + } + offset := int64(blockOffsets[j*blocksAcross+i]) + n := int64(blockCounts[j*blocksAcross+i]) + switch d.firstVal(tCompression) { + + // According to the spec, Compression does not have a default value, + // but some tools interpret a missing Compression value as none so we do + // the same. + case cNone, 0: + if b, ok := d.r.(*buffer); ok { + d.buf, err = b.Slice(int(offset), int(n)) + } else { + d.buf = make([]byte, n) + _, err = d.r.ReadAt(d.buf, offset) + } + case cLZW: + r := lzw.NewReader(io.NewSectionReader(d.r, offset, n), lzw.MSB, 8) + d.buf, err = ioutil.ReadAll(r) + r.Close() + case cDeflate, cDeflateOld: + var r io.ReadCloser + r, err = zlib.NewReader(io.NewSectionReader(d.r, offset, n)) + if err != nil { + return nil, err + } + d.buf, err = ioutil.ReadAll(r) + r.Close() + case cPackBits: + d.buf, err = unpackBits(io.NewSectionReader(d.r, offset, n)) + default: + err = UnsupportedError(fmt.Sprintf("compression value %d", d.firstVal(tCompression))) + } + if err != nil { + return nil, err + } + + xmin := i * blockWidth + ymin := j * blockHeight + xmax := xmin + blkW + ymax := ymin + blkH + err = d.decode(img, xmin, ymin, xmax, ymax) + if err != nil { + return nil, err + } + } + } + return +} + +func init() { + image.RegisterFormat("tiff", leHeader, Decode, DecodeConfig) + image.RegisterFormat("tiff", beHeader, Decode, DecodeConfig) +} diff --git a/vendor/golang.org/x/image/tiff/writer.go b/vendor/golang.org/x/image/tiff/writer.go new file mode 100644 index 0000000..c8a01ce --- /dev/null +++ b/vendor/golang.org/x/image/tiff/writer.go @@ -0,0 +1,438 @@ +// Copyright 2012 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package tiff + +import ( + "bytes" + "compress/zlib" + "encoding/binary" + "image" + "io" + "sort" +) + +// The TIFF format allows to choose the order of the different elements freely. +// The basic structure of a TIFF file written by this package is: +// +// 1. Header (8 bytes). +// 2. Image data. +// 3. Image File Directory (IFD). +// 4. "Pointer area" for larger entries in the IFD. + +// We only write little-endian TIFF files. +var enc = binary.LittleEndian + +// An ifdEntry is a single entry in an Image File Directory. +// A value of type dtRational is composed of two 32-bit values, +// thus data contains two uints (numerator and denominator) for a single number. +type ifdEntry struct { + tag int + datatype int + data []uint32 +} + +func (e ifdEntry) putData(p []byte) { + for _, d := range e.data { + switch e.datatype { + case dtByte, dtASCII: + p[0] = byte(d) + p = p[1:] + case dtShort: + enc.PutUint16(p, uint16(d)) + p = p[2:] + case dtLong, dtRational: + enc.PutUint32(p, uint32(d)) + p = p[4:] + } + } +} + +type byTag []ifdEntry + +func (d byTag) Len() int { return len(d) } +func (d byTag) Less(i, j int) bool { return d[i].tag < d[j].tag } +func (d byTag) Swap(i, j int) { d[i], d[j] = d[j], d[i] } + +func encodeGray(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error { + if !predictor { + return writePix(w, pix, dy, dx, stride) + } + buf := make([]byte, dx) + for y := 0; y < dy; y++ { + min := y*stride + 0 + max := y*stride + dx + off := 0 + var v0 uint8 + for i := min; i < max; i++ { + v1 := pix[i] + buf[off] = v1 - v0 + v0 = v1 + off++ + } + if _, err := w.Write(buf); err != nil { + return err + } + } + return nil +} + +func encodeGray16(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error { + buf := make([]byte, dx*2) + for y := 0; y < dy; y++ { + min := y*stride + 0 + max := y*stride + dx*2 + off := 0 + var v0 uint16 + for i := min; i < max; i += 2 { + // An image.Gray16's Pix is in big-endian order. + v1 := uint16(pix[i])<<8 | uint16(pix[i+1]) + if predictor { + v0, v1 = v1, v1-v0 + } + // We only write little-endian TIFF files. + buf[off+0] = byte(v1) + buf[off+1] = byte(v1 >> 8) + off += 2 + } + if _, err := w.Write(buf); err != nil { + return err + } + } + return nil +} + +func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error { + if !predictor { + return writePix(w, pix, dy, dx*4, stride) + } + buf := make([]byte, dx*4) + for y := 0; y < dy; y++ { + min := y*stride + 0 + max := y*stride + dx*4 + off := 0 + var r0, g0, b0, a0 uint8 + for i := min; i < max; i += 4 { + r1, g1, b1, a1 := pix[i+0], pix[i+1], pix[i+2], pix[i+3] + buf[off+0] = r1 - r0 + buf[off+1] = g1 - g0 + buf[off+2] = b1 - b0 + buf[off+3] = a1 - a0 + off += 4 + r0, g0, b0, a0 = r1, g1, b1, a1 + } + if _, err := w.Write(buf); err != nil { + return err + } + } + return nil +} + +func encodeRGBA64(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error { + buf := make([]byte, dx*8) + for y := 0; y < dy; y++ { + min := y*stride + 0 + max := y*stride + dx*8 + off := 0 + var r0, g0, b0, a0 uint16 + for i := min; i < max; i += 8 { + // An image.RGBA64's Pix is in big-endian order. + r1 := uint16(pix[i+0])<<8 | uint16(pix[i+1]) + g1 := uint16(pix[i+2])<<8 | uint16(pix[i+3]) + b1 := uint16(pix[i+4])<<8 | uint16(pix[i+5]) + a1 := uint16(pix[i+6])<<8 | uint16(pix[i+7]) + if predictor { + r0, r1 = r1, r1-r0 + g0, g1 = g1, g1-g0 + b0, b1 = b1, b1-b0 + a0, a1 = a1, a1-a0 + } + // We only write little-endian TIFF files. + buf[off+0] = byte(r1) + buf[off+1] = byte(r1 >> 8) + buf[off+2] = byte(g1) + buf[off+3] = byte(g1 >> 8) + buf[off+4] = byte(b1) + buf[off+5] = byte(b1 >> 8) + buf[off+6] = byte(a1) + buf[off+7] = byte(a1 >> 8) + off += 8 + } + if _, err := w.Write(buf); err != nil { + return err + } + } + return nil +} + +func encode(w io.Writer, m image.Image, predictor bool) error { + bounds := m.Bounds() + buf := make([]byte, 4*bounds.Dx()) + for y := bounds.Min.Y; y < bounds.Max.Y; y++ { + off := 0 + if predictor { + var r0, g0, b0, a0 uint8 + for x := bounds.Min.X; x < bounds.Max.X; x++ { + r, g, b, a := m.At(x, y).RGBA() + r1 := uint8(r >> 8) + g1 := uint8(g >> 8) + b1 := uint8(b >> 8) + a1 := uint8(a >> 8) + buf[off+0] = r1 - r0 + buf[off+1] = g1 - g0 + buf[off+2] = b1 - b0 + buf[off+3] = a1 - a0 + off += 4 + r0, g0, b0, a0 = r1, g1, b1, a1 + } + } else { + for x := bounds.Min.X; x < bounds.Max.X; x++ { + r, g, b, a := m.At(x, y).RGBA() + buf[off+0] = uint8(r >> 8) + buf[off+1] = uint8(g >> 8) + buf[off+2] = uint8(b >> 8) + buf[off+3] = uint8(a >> 8) + off += 4 + } + } + if _, err := w.Write(buf); err != nil { + return err + } + } + return nil +} + +// writePix writes the internal byte array of an image to w. It is less general +// but much faster then encode. writePix is used when pix directly +// corresponds to one of the TIFF image types. +func writePix(w io.Writer, pix []byte, nrows, length, stride int) error { + if length == stride { + _, err := w.Write(pix[:nrows*length]) + return err + } + for ; nrows > 0; nrows-- { + if _, err := w.Write(pix[:length]); err != nil { + return err + } + pix = pix[stride:] + } + return nil +} + +func writeIFD(w io.Writer, ifdOffset int, d []ifdEntry) error { + var buf [ifdLen]byte + // Make space for "pointer area" containing IFD entry data + // longer than 4 bytes. + parea := make([]byte, 1024) + pstart := ifdOffset + ifdLen*len(d) + 6 + var o int // Current offset in parea. + + // The IFD has to be written with the tags in ascending order. + sort.Sort(byTag(d)) + + // Write the number of entries in this IFD. + if err := binary.Write(w, enc, uint16(len(d))); err != nil { + return err + } + for _, ent := range d { + enc.PutUint16(buf[0:2], uint16(ent.tag)) + enc.PutUint16(buf[2:4], uint16(ent.datatype)) + count := uint32(len(ent.data)) + if ent.datatype == dtRational { + count /= 2 + } + enc.PutUint32(buf[4:8], count) + datalen := int(count * lengths[ent.datatype]) + if datalen <= 4 { + ent.putData(buf[8:12]) + } else { + if (o + datalen) > len(parea) { + newlen := len(parea) + 1024 + for (o + datalen) > newlen { + newlen += 1024 + } + newarea := make([]byte, newlen) + copy(newarea, parea) + parea = newarea + } + ent.putData(parea[o : o+datalen]) + enc.PutUint32(buf[8:12], uint32(pstart+o)) + o += datalen + } + if _, err := w.Write(buf[:]); err != nil { + return err + } + } + // The IFD ends with the offset of the next IFD in the file, + // or zero if it is the last one (page 14). + if err := binary.Write(w, enc, uint32(0)); err != nil { + return err + } + _, err := w.Write(parea[:o]) + return err +} + +// Options are the encoding parameters. +type Options struct { + // Compression is the type of compression used. + Compression CompressionType + // Predictor determines whether a differencing predictor is used; + // if true, instead of each pixel's color, the color difference to the + // preceding one is saved. This improves the compression for certain + // types of images and compressors. For example, it works well for + // photos with Deflate compression. + Predictor bool +} + +// Encode writes the image m to w. opt determines the options used for +// encoding, such as the compression type. If opt is nil, an uncompressed +// image is written. +func Encode(w io.Writer, m image.Image, opt *Options) error { + d := m.Bounds().Size() + + compression := uint32(cNone) + predictor := false + if opt != nil { + compression = opt.Compression.specValue() + // The predictor field is only used with LZW. See page 64 of the spec. + predictor = opt.Predictor && compression == cLZW + } + + _, err := io.WriteString(w, leHeader) + if err != nil { + return err + } + + // Compressed data is written into a buffer first, so that we + // know the compressed size. + var buf bytes.Buffer + // dst holds the destination for the pixel data of the image -- + // either w or a writer to buf. + var dst io.Writer + // imageLen is the length of the pixel data in bytes. + // The offset of the IFD is imageLen + 8 header bytes. + var imageLen int + + switch compression { + case cNone: + dst = w + // Write IFD offset before outputting pixel data. + switch m.(type) { + case *image.Paletted: + imageLen = d.X * d.Y * 1 + case *image.Gray: + imageLen = d.X * d.Y * 1 + case *image.Gray16: + imageLen = d.X * d.Y * 2 + case *image.RGBA64: + imageLen = d.X * d.Y * 8 + case *image.NRGBA64: + imageLen = d.X * d.Y * 8 + default: + imageLen = d.X * d.Y * 4 + } + err = binary.Write(w, enc, uint32(imageLen+8)) + if err != nil { + return err + } + case cDeflate: + dst = zlib.NewWriter(&buf) + } + + pr := uint32(prNone) + photometricInterpretation := uint32(pRGB) + samplesPerPixel := uint32(4) + bitsPerSample := []uint32{8, 8, 8, 8} + extraSamples := uint32(0) + colorMap := []uint32{} + + if predictor { + pr = prHorizontal + } + switch m := m.(type) { + case *image.Paletted: + photometricInterpretation = pPaletted + samplesPerPixel = 1 + bitsPerSample = []uint32{8} + colorMap = make([]uint32, 256*3) + for i := 0; i < 256 && i < len(m.Palette); i++ { + r, g, b, _ := m.Palette[i].RGBA() + colorMap[i+0*256] = uint32(r) + colorMap[i+1*256] = uint32(g) + colorMap[i+2*256] = uint32(b) + } + err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.Gray: + photometricInterpretation = pBlackIsZero + samplesPerPixel = 1 + bitsPerSample = []uint32{8} + err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.Gray16: + photometricInterpretation = pBlackIsZero + samplesPerPixel = 1 + bitsPerSample = []uint32{16} + err = encodeGray16(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.NRGBA: + extraSamples = 2 // Unassociated alpha. + err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.NRGBA64: + extraSamples = 2 // Unassociated alpha. + bitsPerSample = []uint32{16, 16, 16, 16} + err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.RGBA: + extraSamples = 1 // Associated alpha. + err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + case *image.RGBA64: + extraSamples = 1 // Associated alpha. + bitsPerSample = []uint32{16, 16, 16, 16} + err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor) + default: + extraSamples = 1 // Associated alpha. + err = encode(dst, m, predictor) + } + if err != nil { + return err + } + + if compression != cNone { + if err = dst.(io.Closer).Close(); err != nil { + return err + } + imageLen = buf.Len() + if err = binary.Write(w, enc, uint32(imageLen+8)); err != nil { + return err + } + if _, err = buf.WriteTo(w); err != nil { + return err + } + } + + ifd := []ifdEntry{ + {tImageWidth, dtShort, []uint32{uint32(d.X)}}, + {tImageLength, dtShort, []uint32{uint32(d.Y)}}, + {tBitsPerSample, dtShort, bitsPerSample}, + {tCompression, dtShort, []uint32{compression}}, + {tPhotometricInterpretation, dtShort, []uint32{photometricInterpretation}}, + {tStripOffsets, dtLong, []uint32{8}}, + {tSamplesPerPixel, dtShort, []uint32{samplesPerPixel}}, + {tRowsPerStrip, dtShort, []uint32{uint32(d.Y)}}, + {tStripByteCounts, dtLong, []uint32{uint32(imageLen)}}, + // There is currently no support for storing the image + // resolution, so give a bogus value of 72x72 dpi. + {tXResolution, dtRational, []uint32{72, 1}}, + {tYResolution, dtRational, []uint32{72, 1}}, + {tResolutionUnit, dtShort, []uint32{resPerInch}}, + } + if pr != prNone { + ifd = append(ifd, ifdEntry{tPredictor, dtShort, []uint32{pr}}) + } + if len(colorMap) != 0 { + ifd = append(ifd, ifdEntry{tColorMap, dtShort, colorMap}) + } + if extraSamples > 0 { + ifd = append(ifd, ifdEntry{tExtraSamples, dtShort, []uint32{extraSamples}}) + } + + return writeIFD(w, imageLen+8, ifd) +} |