aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vp8l/decode.go
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/golang.org/x/image/vp8l/decode.go')
-rw-r--r--vendor/golang.org/x/image/vp8l/decode.go603
1 files changed, 0 insertions, 603 deletions
diff --git a/vendor/golang.org/x/image/vp8l/decode.go b/vendor/golang.org/x/image/vp8l/decode.go
deleted file mode 100644
index 4319487..0000000
--- a/vendor/golang.org/x/image/vp8l/decode.go
+++ /dev/null
@@ -1,603 +0,0 @@
-// Copyright 2014 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Package vp8l implements a decoder for the VP8L lossless image format.
-//
-// The VP8L specification is at:
-// https://developers.google.com/speed/webp/docs/riff_container
-package vp8l // import "golang.org/x/image/vp8l"
-
-import (
- "bufio"
- "errors"
- "image"
- "image/color"
- "io"
-)
-
-var (
- errInvalidCodeLengths = errors.New("vp8l: invalid code lengths")
- errInvalidHuffmanTree = errors.New("vp8l: invalid Huffman tree")
-)
-
-// colorCacheMultiplier is the multiplier used for the color cache hash
-// function, specified in section 4.2.3.
-const colorCacheMultiplier = 0x1e35a7bd
-
-// distanceMapTable is the look-up table for distanceMap.
-var distanceMapTable = [120]uint8{
- 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
- 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
- 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
- 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
- 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
- 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
- 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
- 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
- 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
- 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
- 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
- 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70,
-}
-
-// distanceMap maps a LZ77 backwards reference distance to a two-dimensional
-// pixel offset, specified in section 4.2.2.
-func distanceMap(w int32, code uint32) int32 {
- if int32(code) > int32(len(distanceMapTable)) {
- return int32(code) - int32(len(distanceMapTable))
- }
- distCode := int32(distanceMapTable[code-1])
- yOffset := distCode >> 4
- xOffset := 8 - distCode&0xf
- if d := yOffset*w + xOffset; d >= 1 {
- return d
- }
- return 1
-}
-
-// decoder holds the bit-stream for a VP8L image.
-type decoder struct {
- r io.ByteReader
- bits uint32
- nBits uint32
-}
-
-// read reads the next n bits from the decoder's bit-stream.
-func (d *decoder) read(n uint32) (uint32, error) {
- for d.nBits < n {
- c, err := d.r.ReadByte()
- if err != nil {
- if err == io.EOF {
- err = io.ErrUnexpectedEOF
- }
- return 0, err
- }
- d.bits |= uint32(c) << d.nBits
- d.nBits += 8
- }
- u := d.bits & (1<<n - 1)
- d.bits >>= n
- d.nBits -= n
- return u, nil
-}
-
-// decodeTransform decodes the next transform and the width of the image after
-// transformation (or equivalently, before inverse transformation), specified
-// in section 3.
-func (d *decoder) decodeTransform(w int32, h int32) (t transform, newWidth int32, err error) {
- t.oldWidth = w
- t.transformType, err = d.read(2)
- if err != nil {
- return transform{}, 0, err
- }
- switch t.transformType {
- case transformTypePredictor, transformTypeCrossColor:
- t.bits, err = d.read(3)
- if err != nil {
- return transform{}, 0, err
- }
- t.bits += 2
- t.pix, err = d.decodePix(nTiles(w, t.bits), nTiles(h, t.bits), 0, false)
- if err != nil {
- return transform{}, 0, err
- }
- case transformTypeSubtractGreen:
- // No-op.
- case transformTypeColorIndexing:
- nColors, err := d.read(8)
- if err != nil {
- return transform{}, 0, err
- }
- nColors++
- t.bits = 0
- switch {
- case nColors <= 2:
- t.bits = 3
- case nColors <= 4:
- t.bits = 2
- case nColors <= 16:
- t.bits = 1
- }
- w = nTiles(w, t.bits)
- pix, err := d.decodePix(int32(nColors), 1, 4*256, false)
- if err != nil {
- return transform{}, 0, err
- }
- for p := 4; p < len(pix); p += 4 {
- pix[p+0] += pix[p-4]
- pix[p+1] += pix[p-3]
- pix[p+2] += pix[p-2]
- pix[p+3] += pix[p-1]
- }
- // The spec says that "if the index is equal or larger than color_table_size,
- // the argb color value should be set to 0x00000000 (transparent black)."
- // We re-slice up to 256 4-byte pixels.
- t.pix = pix[:4*256]
- }
- return t, w, nil
-}
-
-// repeatsCodeLength is the minimum code length for repeated codes.
-const repeatsCodeLength = 16
-
-// These magic numbers are specified at the end of section 5.2.2.
-// The 3-length arrays apply to code lengths >= repeatsCodeLength.
-var (
- codeLengthCodeOrder = [19]uint8{
- 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
- }
- repeatBits = [3]uint8{2, 3, 7}
- repeatOffsets = [3]uint8{3, 3, 11}
-)
-
-// decodeCodeLengths decodes a Huffman tree's code lengths which are themselves
-// encoded via a Huffman tree, specified in section 5.2.2.
-func (d *decoder) decodeCodeLengths(dst []uint32, codeLengthCodeLengths []uint32) error {
- h := hTree{}
- if err := h.build(codeLengthCodeLengths); err != nil {
- return err
- }
-
- maxSymbol := len(dst)
- useLength, err := d.read(1)
- if err != nil {
- return err
- }
- if useLength != 0 {
- n, err := d.read(3)
- if err != nil {
- return err
- }
- n = 2 + 2*n
- ms, err := d.read(n)
- if err != nil {
- return err
- }
- maxSymbol = int(ms) + 2
- if maxSymbol > len(dst) {
- return errInvalidCodeLengths
- }
- }
-
- // The spec says that "if code 16 [meaning repeat] is used before
- // a non-zero value has been emitted, a value of 8 is repeated."
- prevCodeLength := uint32(8)
-
- for symbol := 0; symbol < len(dst); {
- if maxSymbol == 0 {
- break
- }
- maxSymbol--
- codeLength, err := h.next(d)
- if err != nil {
- return err
- }
- if codeLength < repeatsCodeLength {
- dst[symbol] = codeLength
- symbol++
- if codeLength != 0 {
- prevCodeLength = codeLength
- }
- continue
- }
-
- repeat, err := d.read(uint32(repeatBits[codeLength-repeatsCodeLength]))
- if err != nil {
- return err
- }
- repeat += uint32(repeatOffsets[codeLength-repeatsCodeLength])
- if symbol+int(repeat) > len(dst) {
- return errInvalidCodeLengths
- }
- // A code length of 16 repeats the previous non-zero code.
- // A code length of 17 or 18 repeats zeroes.
- cl := uint32(0)
- if codeLength == 16 {
- cl = prevCodeLength
- }
- for ; repeat > 0; repeat-- {
- dst[symbol] = cl
- symbol++
- }
- }
- return nil
-}
-
-// decodeHuffmanTree decodes a Huffman tree into h.
-func (d *decoder) decodeHuffmanTree(h *hTree, alphabetSize uint32) error {
- useSimple, err := d.read(1)
- if err != nil {
- return err
- }
- if useSimple != 0 {
- nSymbols, err := d.read(1)
- if err != nil {
- return err
- }
- nSymbols++
- firstSymbolLengthCode, err := d.read(1)
- if err != nil {
- return err
- }
- firstSymbolLengthCode = 7*firstSymbolLengthCode + 1
- var symbols [2]uint32
- symbols[0], err = d.read(firstSymbolLengthCode)
- if err != nil {
- return err
- }
- if nSymbols == 2 {
- symbols[1], err = d.read(8)
- if err != nil {
- return err
- }
- }
- return h.buildSimple(nSymbols, symbols, alphabetSize)
- }
-
- nCodes, err := d.read(4)
- if err != nil {
- return err
- }
- nCodes += 4
- if int(nCodes) > len(codeLengthCodeOrder) {
- return errInvalidHuffmanTree
- }
- codeLengthCodeLengths := [len(codeLengthCodeOrder)]uint32{}
- for i := uint32(0); i < nCodes; i++ {
- codeLengthCodeLengths[codeLengthCodeOrder[i]], err = d.read(3)
- if err != nil {
- return err
- }
- }
- codeLengths := make([]uint32, alphabetSize)
- if err = d.decodeCodeLengths(codeLengths, codeLengthCodeLengths[:]); err != nil {
- return err
- }
- return h.build(codeLengths)
-}
-
-const (
- huffGreen = 0
- huffRed = 1
- huffBlue = 2
- huffAlpha = 3
- huffDistance = 4
- nHuff = 5
-)
-
-// hGroup is an array of 5 Huffman trees.
-type hGroup [nHuff]hTree
-
-// decodeHuffmanGroups decodes the one or more hGroups used to decode the pixel
-// data. If one hGroup is used for the entire image, then hPix and hBits will
-// be zero. If more than one hGroup is used, then hPix contains the meta-image
-// that maps tiles to hGroup index, and hBits contains the log-2 tile size.
-func (d *decoder) decodeHuffmanGroups(w int32, h int32, topLevel bool, ccBits uint32) (
- hGroups []hGroup, hPix []byte, hBits uint32, err error) {
-
- maxHGroupIndex := 0
- if topLevel {
- useMeta, err := d.read(1)
- if err != nil {
- return nil, nil, 0, err
- }
- if useMeta != 0 {
- hBits, err = d.read(3)
- if err != nil {
- return nil, nil, 0, err
- }
- hBits += 2
- hPix, err = d.decodePix(nTiles(w, hBits), nTiles(h, hBits), 0, false)
- if err != nil {
- return nil, nil, 0, err
- }
- for p := 0; p < len(hPix); p += 4 {
- i := int(hPix[p])<<8 | int(hPix[p+1])
- if maxHGroupIndex < i {
- maxHGroupIndex = i
- }
- }
- }
- }
- hGroups = make([]hGroup, maxHGroupIndex+1)
- for i := range hGroups {
- for j, alphabetSize := range alphabetSizes {
- if j == 0 && ccBits > 0 {
- alphabetSize += 1 << ccBits
- }
- if err := d.decodeHuffmanTree(&hGroups[i][j], alphabetSize); err != nil {
- return nil, nil, 0, err
- }
- }
- }
- return hGroups, hPix, hBits, nil
-}
-
-const (
- nLiteralCodes = 256
- nLengthCodes = 24
- nDistanceCodes = 40
-)
-
-var alphabetSizes = [nHuff]uint32{
- nLiteralCodes + nLengthCodes,
- nLiteralCodes,
- nLiteralCodes,
- nLiteralCodes,
- nDistanceCodes,
-}
-
-// decodePix decodes pixel data, specified in section 5.2.2.
-func (d *decoder) decodePix(w int32, h int32, minCap int32, topLevel bool) ([]byte, error) {
- // Decode the color cache parameters.
- ccBits, ccShift, ccEntries := uint32(0), uint32(0), ([]uint32)(nil)
- useColorCache, err := d.read(1)
- if err != nil {
- return nil, err
- }
- if useColorCache != 0 {
- ccBits, err = d.read(4)
- if err != nil {
- return nil, err
- }
- if ccBits < 1 || 11 < ccBits {
- return nil, errors.New("vp8l: invalid color cache parameters")
- }
- ccShift = 32 - ccBits
- ccEntries = make([]uint32, 1<<ccBits)
- }
-
- // Decode the Huffman groups.
- hGroups, hPix, hBits, err := d.decodeHuffmanGroups(w, h, topLevel, ccBits)
- if err != nil {
- return nil, err
- }
- hMask, tilesPerRow := int32(0), int32(0)
- if hBits != 0 {
- hMask, tilesPerRow = 1<<hBits-1, nTiles(w, hBits)
- }
-
- // Decode the pixels.
- if minCap < 4*w*h {
- minCap = 4 * w * h
- }
- pix := make([]byte, 4*w*h, minCap)
- p, cachedP := 0, 0
- x, y := int32(0), int32(0)
- hg, lookupHG := &hGroups[0], hMask != 0
- for p < len(pix) {
- if lookupHG {
- i := 4 * (tilesPerRow*(y>>hBits) + (x >> hBits))
- hg = &hGroups[uint32(hPix[i])<<8|uint32(hPix[i+1])]
- }
-
- green, err := hg[huffGreen].next(d)
- if err != nil {
- return nil, err
- }
- switch {
- case green < nLiteralCodes:
- // We have a literal pixel.
- red, err := hg[huffRed].next(d)
- if err != nil {
- return nil, err
- }
- blue, err := hg[huffBlue].next(d)
- if err != nil {
- return nil, err
- }
- alpha, err := hg[huffAlpha].next(d)
- if err != nil {
- return nil, err
- }
- pix[p+0] = uint8(red)
- pix[p+1] = uint8(green)
- pix[p+2] = uint8(blue)
- pix[p+3] = uint8(alpha)
- p += 4
-
- x++
- if x == w {
- x, y = 0, y+1
- }
- lookupHG = hMask != 0 && x&hMask == 0
-
- case green < nLiteralCodes+nLengthCodes:
- // We have a LZ77 backwards reference.
- length, err := d.lz77Param(green - nLiteralCodes)
- if err != nil {
- return nil, err
- }
- distSym, err := hg[huffDistance].next(d)
- if err != nil {
- return nil, err
- }
- distCode, err := d.lz77Param(distSym)
- if err != nil {
- return nil, err
- }
- dist := distanceMap(w, distCode)
- pEnd := p + 4*int(length)
- q := p - 4*int(dist)
- qEnd := pEnd - 4*int(dist)
- if p < 0 || len(pix) < pEnd || q < 0 || len(pix) < qEnd {
- return nil, errors.New("vp8l: invalid LZ77 parameters")
- }
- for ; p < pEnd; p, q = p+1, q+1 {
- pix[p] = pix[q]
- }
-
- x += int32(length)
- for x >= w {
- x, y = x-w, y+1
- }
- lookupHG = hMask != 0
-
- default:
- // We have a color cache lookup. First, insert previous pixels
- // into the cache. Note that VP8L assumes ARGB order, but the
- // Go image.RGBA type is in RGBA order.
- for ; cachedP < p; cachedP += 4 {
- argb := uint32(pix[cachedP+0])<<16 |
- uint32(pix[cachedP+1])<<8 |
- uint32(pix[cachedP+2])<<0 |
- uint32(pix[cachedP+3])<<24
- ccEntries[(argb*colorCacheMultiplier)>>ccShift] = argb
- }
- green -= nLiteralCodes + nLengthCodes
- if int(green) >= len(ccEntries) {
- return nil, errors.New("vp8l: invalid color cache index")
- }
- argb := ccEntries[green]
- pix[p+0] = uint8(argb >> 16)
- pix[p+1] = uint8(argb >> 8)
- pix[p+2] = uint8(argb >> 0)
- pix[p+3] = uint8(argb >> 24)
- p += 4
-
- x++
- if x == w {
- x, y = 0, y+1
- }
- lookupHG = hMask != 0 && x&hMask == 0
- }
- }
- return pix, nil
-}
-
-// lz77Param returns the next LZ77 parameter: a length or a distance, specified
-// in section 4.2.2.
-func (d *decoder) lz77Param(symbol uint32) (uint32, error) {
- if symbol < 4 {
- return symbol + 1, nil
- }
- extraBits := (symbol - 2) >> 1
- offset := (2 + symbol&1) << extraBits
- n, err := d.read(extraBits)
- if err != nil {
- return 0, err
- }
- return offset + n + 1, nil
-}
-
-// decodeHeader decodes the VP8L header from r.
-func decodeHeader(r io.Reader) (d *decoder, w int32, h int32, err error) {
- rr, ok := r.(io.ByteReader)
- if !ok {
- rr = bufio.NewReader(r)
- }
- d = &decoder{r: rr}
- magic, err := d.read(8)
- if err != nil {
- return nil, 0, 0, err
- }
- if magic != 0x2f {
- return nil, 0, 0, errors.New("vp8l: invalid header")
- }
- width, err := d.read(14)
- if err != nil {
- return nil, 0, 0, err
- }
- width++
- height, err := d.read(14)
- if err != nil {
- return nil, 0, 0, err
- }
- height++
- _, err = d.read(1) // Read and ignore the hasAlpha hint.
- if err != nil {
- return nil, 0, 0, err
- }
- version, err := d.read(3)
- if err != nil {
- return nil, 0, 0, err
- }
- if version != 0 {
- return nil, 0, 0, errors.New("vp8l: invalid version")
- }
- return d, int32(width), int32(height), nil
-}
-
-// DecodeConfig decodes the color model and dimensions of a VP8L image from r.
-func DecodeConfig(r io.Reader) (image.Config, error) {
- _, w, h, err := decodeHeader(r)
- if err != nil {
- return image.Config{}, err
- }
- return image.Config{
- ColorModel: color.NRGBAModel,
- Width: int(w),
- Height: int(h),
- }, nil
-}
-
-// Decode decodes a VP8L image from r.
-func Decode(r io.Reader) (image.Image, error) {
- d, w, h, err := decodeHeader(r)
- if err != nil {
- return nil, err
- }
- // Decode the transforms.
- var (
- nTransforms int
- transforms [nTransformTypes]transform
- transformsSeen [nTransformTypes]bool
- originalW = w
- )
- for {
- more, err := d.read(1)
- if err != nil {
- return nil, err
- }
- if more == 0 {
- break
- }
- var t transform
- t, w, err = d.decodeTransform(w, h)
- if err != nil {
- return nil, err
- }
- if transformsSeen[t.transformType] {
- return nil, errors.New("vp8l: repeated transform")
- }
- transformsSeen[t.transformType] = true
- transforms[nTransforms] = t
- nTransforms++
- }
- // Decode the transformed pixels.
- pix, err := d.decodePix(w, h, 0, true)
- if err != nil {
- return nil, err
- }
- // Apply the inverse transformations.
- for i := nTransforms - 1; i >= 0; i-- {
- t := &transforms[i]
- pix = inverseTransforms[t.transformType](t, pix, h)
- }
- return &image.NRGBA{
- Pix: pix,
- Stride: 4 * int(originalW),
- Rect: image.Rect(0, 0, int(originalW), int(h)),
- }, nil
-}