aboutsummaryrefslogtreecommitdiff
path: root/vendor/github.com/lucasb-eyer/go-colorful/colors.go
blob: febf94c7afd692a9198d3bc3d9de441102b3cf57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
// The colorful package provides all kinds of functions for working with colors.
package colorful

import (
	"fmt"
	"image/color"
	"math"
)

// A color is stored internally using sRGB (standard RGB) values in the range 0-1
type Color struct {
	R, G, B float64
}

// Implement the Go color.Color interface.
func (col Color) RGBA() (r, g, b, a uint32) {
	r = uint32(col.R*65535.0 + 0.5)
	g = uint32(col.G*65535.0 + 0.5)
	b = uint32(col.B*65535.0 + 0.5)
	a = 0xFFFF
	return
}

// Constructs a colorful.Color from something implementing color.Color
func MakeColor(col color.Color) (Color, bool) {
	r, g, b, a := col.RGBA()
	if a == 0 {
		return Color{0, 0, 0}, false
	}

	// Since color.Color is alpha pre-multiplied, we need to divide the
	// RGB values by alpha again in order to get back the original RGB.
	r *= 0xffff
	r /= a
	g *= 0xffff
	g /= a
	b *= 0xffff
	b /= a

	return Color{float64(r) / 65535.0, float64(g) / 65535.0, float64(b) / 65535.0}, true
}

// Might come in handy sometimes to reduce boilerplate code.
func (col Color) RGB255() (r, g, b uint8) {
	r = uint8(col.R*255.0 + 0.5)
	g = uint8(col.G*255.0 + 0.5)
	b = uint8(col.B*255.0 + 0.5)
	return
}

// This is the tolerance used when comparing colors using AlmostEqualRgb.
const Delta = 1.0 / 255.0

// This is the default reference white point.
var D65 = [3]float64{0.95047, 1.00000, 1.08883}

// And another one.
var D50 = [3]float64{0.96422, 1.00000, 0.82521}

// Checks whether the color exists in RGB space, i.e. all values are in [0..1]
func (c Color) IsValid() bool {
	return 0.0 <= c.R && c.R <= 1.0 &&
		0.0 <= c.G && c.G <= 1.0 &&
		0.0 <= c.B && c.B <= 1.0
}

func clamp01(v float64) float64 {
	return math.Max(0.0, math.Min(v, 1.0))
}

// Returns Clamps the color into valid range, clamping each value to [0..1]
// If the color is valid already, this is a no-op.
func (c Color) Clamped() Color {
	return Color{clamp01(c.R), clamp01(c.G), clamp01(c.B)}
}

func sq(v float64) float64 {
	return v * v
}

func cub(v float64) float64 {
	return v * v * v
}

// DistanceRgb computes the distance between two colors in RGB space.
// This is not a good measure! Rather do it in Lab space.
func (c1 Color) DistanceRgb(c2 Color) float64 {
	return math.Sqrt(sq(c1.R-c2.R) + sq(c1.G-c2.G) + sq(c1.B-c2.B))
}

// Check for equality between colors within the tolerance Delta (1/255).
func (c1 Color) AlmostEqualRgb(c2 Color) bool {
	return math.Abs(c1.R-c2.R)+
		math.Abs(c1.G-c2.G)+
		math.Abs(c1.B-c2.B) < 3.0*Delta
}

// You don't really want to use this, do you? Go for BlendLab, BlendLuv or BlendHcl.
func (c1 Color) BlendRgb(c2 Color, t float64) Color {
	return Color{c1.R + t*(c2.R-c1.R),
		c1.G + t*(c2.G-c1.G),
		c1.B + t*(c2.B-c1.B)}
}

// Utility used by Hxx color-spaces for interpolating between two angles in [0,360].
func interp_angle(a0, a1, t float64) float64 {
	// Based on the answer here: http://stackoverflow.com/a/14498790/2366315
	// With potential proof that it works here: http://math.stackexchange.com/a/2144499
	delta := math.Mod(math.Mod(a1-a0, 360.0)+540, 360.0) - 180.0
	return math.Mod(a0+t*delta+360.0, 360.0)
}

/// HSV ///
///////////
// From http://en.wikipedia.org/wiki/HSL_and_HSV
// Note that h is in [0..360] and s,v in [0..1]

// Hsv returns the Hue [0..360], Saturation and Value [0..1] of the color.
func (col Color) Hsv() (h, s, v float64) {
	min := math.Min(math.Min(col.R, col.G), col.B)
	v = math.Max(math.Max(col.R, col.G), col.B)
	C := v - min

	s = 0.0
	if v != 0.0 {
		s = C / v
	}

	h = 0.0 // We use 0 instead of undefined as in wp.
	if min != v {
		if v == col.R {
			h = math.Mod((col.G-col.B)/C, 6.0)
		}
		if v == col.G {
			h = (col.B-col.R)/C + 2.0
		}
		if v == col.B {
			h = (col.R-col.G)/C + 4.0
		}
		h *= 60.0
		if h < 0.0 {
			h += 360.0
		}
	}
	return
}

// Hsv creates a new Color given a Hue in [0..360], a Saturation and a Value in [0..1]
func Hsv(H, S, V float64) Color {
	Hp := H / 60.0
	C := V * S
	X := C * (1.0 - math.Abs(math.Mod(Hp, 2.0)-1.0))

	m := V - C
	r, g, b := 0.0, 0.0, 0.0

	switch {
	case 0.0 <= Hp && Hp < 1.0:
		r = C
		g = X
	case 1.0 <= Hp && Hp < 2.0:
		r = X
		g = C
	case 2.0 <= Hp && Hp < 3.0:
		g = C
		b = X
	case 3.0 <= Hp && Hp < 4.0:
		g = X
		b = C
	case 4.0 <= Hp && Hp < 5.0:
		r = X
		b = C
	case 5.0 <= Hp && Hp < 6.0:
		r = C
		b = X
	}

	return Color{m + r, m + g, m + b}
}

// You don't really want to use this, do you? Go for BlendLab, BlendLuv or BlendHcl.
func (c1 Color) BlendHsv(c2 Color, t float64) Color {
	h1, s1, v1 := c1.Hsv()
	h2, s2, v2 := c2.Hsv()

	// We know that h are both in [0..360]
	return Hsv(interp_angle(h1, h2, t), s1+t*(s2-s1), v1+t*(v2-v1))
}

/// HSL ///
///////////

// Hsl returns the Hue [0..360], Saturation [0..1], and Luminance (lightness) [0..1] of the color.
func (col Color) Hsl() (h, s, l float64) {
	min := math.Min(math.Min(col.R, col.G), col.B)
	max := math.Max(math.Max(col.R, col.G), col.B)

	l = (max + min) / 2

	if min == max {
		s = 0
		h = 0
	} else {
		if l < 0.5 {
			s = (max - min) / (max + min)
		} else {
			s = (max - min) / (2.0 - max - min)
		}

		if max == col.R {
			h = (col.G - col.B) / (max - min)
		} else if max == col.G {
			h = 2.0 + (col.B-col.R)/(max-min)
		} else {
			h = 4.0 + (col.R-col.G)/(max-min)
		}

		h *= 60

		if h < 0 {
			h += 360
		}
	}

	return
}

// Hsl creates a new Color given a Hue in [0..360], a Saturation [0..1], and a Luminance (lightness) in [0..1]
func Hsl(h, s, l float64) Color {
	if s == 0 {
		return Color{l, l, l}
	}

	var r, g, b float64
	var t1 float64
	var t2 float64
	var tr float64
	var tg float64
	var tb float64

	if l < 0.5 {
		t1 = l * (1.0 + s)
	} else {
		t1 = l + s - l*s
	}

	t2 = 2*l - t1
	h = h / 360
	tr = h + 1.0/3.0
	tg = h
	tb = h - 1.0/3.0

	if tr < 0 {
		tr++
	}
	if tr > 1 {
		tr--
	}
	if tg < 0 {
		tg++
	}
	if tg > 1 {
		tg--
	}
	if tb < 0 {
		tb++
	}
	if tb > 1 {
		tb--
	}

	// Red
	if 6*tr < 1 {
		r = t2 + (t1-t2)*6*tr
	} else if 2*tr < 1 {
		r = t1
	} else if 3*tr < 2 {
		r = t2 + (t1-t2)*(2.0/3.0-tr)*6
	} else {
		r = t2
	}

	// Green
	if 6*tg < 1 {
		g = t2 + (t1-t2)*6*tg
	} else if 2*tg < 1 {
		g = t1
	} else if 3*tg < 2 {
		g = t2 + (t1-t2)*(2.0/3.0-tg)*6
	} else {
		g = t2
	}

	// Blue
	if 6*tb < 1 {
		b = t2 + (t1-t2)*6*tb
	} else if 2*tb < 1 {
		b = t1
	} else if 3*tb < 2 {
		b = t2 + (t1-t2)*(2.0/3.0-tb)*6
	} else {
		b = t2
	}

	return Color{r, g, b}
}

/// Hex ///
///////////

// Hex returns the hex "html" representation of the color, as in #ff0080.
func (col Color) Hex() string {
	// Add 0.5 for rounding
	return fmt.Sprintf("#%02x%02x%02x", uint8(col.R*255.0+0.5), uint8(col.G*255.0+0.5), uint8(col.B*255.0+0.5))
}

// Hex parses a "html" hex color-string, either in the 3 "#f0c" or 6 "#ff1034" digits form.
func Hex(scol string) (Color, error) {
	format := "#%02x%02x%02x"
	factor := 1.0 / 255.0
	if len(scol) == 4 {
		format = "#%1x%1x%1x"
		factor = 1.0 / 15.0
	}

	var r, g, b uint8
	n, err := fmt.Sscanf(scol, format, &r, &g, &b)
	if err != nil {
		return Color{}, err
	}
	if n != 3 {
		return Color{}, fmt.Errorf("color: %v is not a hex-color", scol)
	}

	return Color{float64(r) * factor, float64(g) * factor, float64(b) * factor}, nil
}

/// Linear ///
//////////////
// http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/
// http://www.brucelindbloom.com/Eqn_RGB_to_XYZ.html

func linearize(v float64) float64 {
	if v <= 0.04045 {
		return v / 12.92
	}
	return math.Pow((v+0.055)/1.055, 2.4)
}

// LinearRgb converts the color into the linear RGB space (see http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/).
func (col Color) LinearRgb() (r, g, b float64) {
	r = linearize(col.R)
	g = linearize(col.G)
	b = linearize(col.B)
	return
}

// A much faster and still quite precise linearization using a 6th-order Taylor approximation.
// See the accompanying Jupyter notebook for derivation of the constants.
func linearize_fast(v float64) float64 {
	v1 := v - 0.5
	v2 := v1 * v1
	v3 := v2 * v1
	v4 := v2 * v2
	//v5 := v3*v2
	return -0.248750514614486 + 0.925583310193438*v + 1.16740237321695*v2 + 0.280457026598666*v3 - 0.0757991963780179*v4 //+ 0.0437040411548932*v5
}

// FastLinearRgb is much faster than and almost as accurate as LinearRgb.
// BUT it is important to NOTE that they only produce good results for valid colors r,g,b in [0,1].
func (col Color) FastLinearRgb() (r, g, b float64) {
	r = linearize_fast(col.R)
	g = linearize_fast(col.G)
	b = linearize_fast(col.B)
	return
}

func delinearize(v float64) float64 {
	if v <= 0.0031308 {
		return 12.92 * v
	}
	return 1.055*math.Pow(v, 1.0/2.4) - 0.055
}

// LinearRgb creates an sRGB color out of the given linear RGB color (see http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/).
func LinearRgb(r, g, b float64) Color {
	return Color{delinearize(r), delinearize(g), delinearize(b)}
}

func delinearize_fast(v float64) float64 {
	// This function (fractional root) is much harder to linearize, so we need to split.
	if v > 0.2 {
		v1 := v - 0.6
		v2 := v1 * v1
		v3 := v2 * v1
		v4 := v2 * v2
		v5 := v3 * v2
		return 0.442430344268235 + 0.592178981271708*v - 0.287864782562636*v2 + 0.253214392068985*v3 - 0.272557158129811*v4 + 0.325554383321718*v5
	} else if v > 0.03 {
		v1 := v - 0.115
		v2 := v1 * v1
		v3 := v2 * v1
		v4 := v2 * v2
		v5 := v3 * v2
		return 0.194915592891669 + 1.55227076330229*v - 3.93691860257828*v2 + 18.0679839248761*v3 - 101.468750302746*v4 + 632.341487393927*v5
	} else {
		v1 := v - 0.015
		v2 := v1 * v1
		v3 := v2 * v1
		v4 := v2 * v2
		v5 := v3 * v2
		// You can clearly see from the involved constants that the low-end is highly nonlinear.
		return 0.0519565234928877 + 5.09316778537561*v - 99.0338180489702*v2 + 3484.52322764895*v3 - 150028.083412663*v4 + 7168008.42971613*v5
	}
}

// FastLinearRgb is much faster than and almost as accurate as LinearRgb.
// BUT it is important to NOTE that they only produce good results for valid inputs r,g,b in [0,1].
func FastLinearRgb(r, g, b float64) Color {
	return Color{delinearize_fast(r), delinearize_fast(g), delinearize_fast(b)}
}

// XyzToLinearRgb converts from CIE XYZ-space to Linear RGB space.
func XyzToLinearRgb(x, y, z float64) (r, g, b float64) {
	r = 3.2404542*x - 1.5371385*y - 0.4985314*z
	g = -0.9692660*x + 1.8760108*y + 0.0415560*z
	b = 0.0556434*x - 0.2040259*y + 1.0572252*z
	return
}

func LinearRgbToXyz(r, g, b float64) (x, y, z float64) {
	x = 0.4124564*r + 0.3575761*g + 0.1804375*b
	y = 0.2126729*r + 0.7151522*g + 0.0721750*b
	z = 0.0193339*r + 0.1191920*g + 0.9503041*b
	return
}

/// XYZ ///
///////////
// http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/

func (col Color) Xyz() (x, y, z float64) {
	return LinearRgbToXyz(col.LinearRgb())
}

func Xyz(x, y, z float64) Color {
	return LinearRgb(XyzToLinearRgb(x, y, z))
}

/// xyY ///
///////////
// http://www.brucelindbloom.com/Eqn_XYZ_to_xyY.html

// Well, the name is bad, since it's xyY but Golang needs me to start with a
// capital letter to make the method public.
func XyzToXyy(X, Y, Z float64) (x, y, Yout float64) {
	return XyzToXyyWhiteRef(X, Y, Z, D65)
}

func XyzToXyyWhiteRef(X, Y, Z float64, wref [3]float64) (x, y, Yout float64) {
	Yout = Y
	N := X + Y + Z
	if math.Abs(N) < 1e-14 {
		// When we have black, Bruce Lindbloom recommends to use
		// the reference white's chromacity for x and y.
		x = wref[0] / (wref[0] + wref[1] + wref[2])
		y = wref[1] / (wref[0] + wref[1] + wref[2])
	} else {
		x = X / N
		y = Y / N
	}
	return
}

func XyyToXyz(x, y, Y float64) (X, Yout, Z float64) {
	Yout = Y

	if -1e-14 < y && y < 1e-14 {
		X = 0.0
		Z = 0.0
	} else {
		X = Y / y * x
		Z = Y / y * (1.0 - x - y)
	}

	return
}

// Converts the given color to CIE xyY space using D65 as reference white.
// (Note that the reference white is only used for black input.)
// x, y and Y are in [0..1]
func (col Color) Xyy() (x, y, Y float64) {
	return XyzToXyy(col.Xyz())
}

// Converts the given color to CIE xyY space, taking into account
// a given reference white. (i.e. the monitor's white)
// (Note that the reference white is only used for black input.)
// x, y and Y are in [0..1]
func (col Color) XyyWhiteRef(wref [3]float64) (x, y, Y float64) {
	X, Y2, Z := col.Xyz()
	return XyzToXyyWhiteRef(X, Y2, Z, wref)
}

// Generates a color by using data given in CIE xyY space.
// x, y and Y are in [0..1]
func Xyy(x, y, Y float64) Color {
	return Xyz(XyyToXyz(x, y, Y))
}

/// L*a*b* ///
//////////////
// http://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
// For L*a*b*, we need to L*a*b*<->XYZ->RGB and the first one is device dependent.

func lab_f(t float64) float64 {
	if t > 6.0/29.0*6.0/29.0*6.0/29.0 {
		return math.Cbrt(t)
	}
	return t/3.0*29.0/6.0*29.0/6.0 + 4.0/29.0
}

func XyzToLab(x, y, z float64) (l, a, b float64) {
	// Use D65 white as reference point by default.
	// http://www.fredmiranda.com/forum/topic/1035332
	// http://en.wikipedia.org/wiki/Standard_illuminant
	return XyzToLabWhiteRef(x, y, z, D65)
}

func XyzToLabWhiteRef(x, y, z float64, wref [3]float64) (l, a, b float64) {
	fy := lab_f(y / wref[1])
	l = 1.16*fy - 0.16
	a = 5.0 * (lab_f(x/wref[0]) - fy)
	b = 2.0 * (fy - lab_f(z/wref[2]))
	return
}

func lab_finv(t float64) float64 {
	if t > 6.0/29.0 {
		return t * t * t
	}
	return 3.0 * 6.0 / 29.0 * 6.0 / 29.0 * (t - 4.0/29.0)
}

func LabToXyz(l, a, b float64) (x, y, z float64) {
	// D65 white (see above).
	return LabToXyzWhiteRef(l, a, b, D65)
}

func LabToXyzWhiteRef(l, a, b float64, wref [3]float64) (x, y, z float64) {
	l2 := (l + 0.16) / 1.16
	x = wref[0] * lab_finv(l2+a/5.0)
	y = wref[1] * lab_finv(l2)
	z = wref[2] * lab_finv(l2-b/2.0)
	return
}

// Converts the given color to CIE L*a*b* space using D65 as reference white.
func (col Color) Lab() (l, a, b float64) {
	return XyzToLab(col.Xyz())
}

// Converts the given color to CIE L*a*b* space, taking into account
// a given reference white. (i.e. the monitor's white)
func (col Color) LabWhiteRef(wref [3]float64) (l, a, b float64) {
	x, y, z := col.Xyz()
	return XyzToLabWhiteRef(x, y, z, wref)
}

// Generates a color by using data given in CIE L*a*b* space using D65 as reference white.
// WARNING: many combinations of `l`, `a`, and `b` values do not have corresponding
//          valid RGB values, check the FAQ in the README if you're unsure.
func Lab(l, a, b float64) Color {
	return Xyz(LabToXyz(l, a, b))
}

// Generates a color by using data given in CIE L*a*b* space, taking
// into account a given reference white. (i.e. the monitor's white)
func LabWhiteRef(l, a, b float64, wref [3]float64) Color {
	return Xyz(LabToXyzWhiteRef(l, a, b, wref))
}

// DistanceLab is a good measure of visual similarity between two colors!
// A result of 0 would mean identical colors, while a result of 1 or higher
// means the colors differ a lot.
func (c1 Color) DistanceLab(c2 Color) float64 {
	l1, a1, b1 := c1.Lab()
	l2, a2, b2 := c2.Lab()
	return math.Sqrt(sq(l1-l2) + sq(a1-a2) + sq(b1-b2))
}

// That's actually the same, but I don't want to break code.
func (c1 Color) DistanceCIE76(c2 Color) float64 {
	return c1.DistanceLab(c2)
}

// Uses the CIE94 formula to calculate color distance. More accurate than
// DistanceLab, but also more work.
func (cl Color) DistanceCIE94(cr Color) float64 {
	l1, a1, b1 := cl.Lab()
	l2, a2, b2 := cr.Lab()

	// NOTE: Since all those formulas expect L,a,b values 100x larger than we
	//       have them in this library, we either need to adjust all constants
	//       in the formula, or convert the ranges of L,a,b before, and then
	//       scale the distances down again. The latter is less error-prone.
	l1, a1, b1 = l1*100.0, a1*100.0, b1*100.0
	l2, a2, b2 = l2*100.0, a2*100.0, b2*100.0

	kl := 1.0 // 2.0 for textiles
	kc := 1.0
	kh := 1.0
	k1 := 0.045 // 0.048 for textiles
	k2 := 0.015 // 0.014 for textiles.

	deltaL := l1 - l2
	c1 := math.Sqrt(sq(a1) + sq(b1))
	c2 := math.Sqrt(sq(a2) + sq(b2))
	deltaCab := c1 - c2

	// Not taking Sqrt here for stability, and it's unnecessary.
	deltaHab2 := sq(a1-a2) + sq(b1-b2) - sq(deltaCab)
	sl := 1.0
	sc := 1.0 + k1*c1
	sh := 1.0 + k2*c1

	vL2 := sq(deltaL / (kl * sl))
	vC2 := sq(deltaCab / (kc * sc))
	vH2 := deltaHab2 / sq(kh*sh)

	return math.Sqrt(vL2+vC2+vH2) * 0.01 // See above.
}

// BlendLab blends two colors in the L*a*b* color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (c1 Color) BlendLab(c2 Color, t float64) Color {
	l1, a1, b1 := c1.Lab()
	l2, a2, b2 := c2.Lab()
	return Lab(l1+t*(l2-l1),
		a1+t*(a2-a1),
		b1+t*(b2-b1))
}

/// L*u*v* ///
//////////////
// http://en.wikipedia.org/wiki/CIELUV#XYZ_.E2.86.92_CIELUV_and_CIELUV_.E2.86.92_XYZ_conversions
// For L*u*v*, we need to L*u*v*<->XYZ<->RGB and the first one is device dependent.

func XyzToLuv(x, y, z float64) (l, a, b float64) {
	// Use D65 white as reference point by default.
	// http://www.fredmiranda.com/forum/topic/1035332
	// http://en.wikipedia.org/wiki/Standard_illuminant
	return XyzToLuvWhiteRef(x, y, z, D65)
}

func XyzToLuvWhiteRef(x, y, z float64, wref [3]float64) (l, u, v float64) {
	if y/wref[1] <= 6.0/29.0*6.0/29.0*6.0/29.0 {
		l = y / wref[1] * 29.0 / 3.0 * 29.0 / 3.0 * 29.0 / 3.0
	} else {
		l = 1.16*math.Cbrt(y/wref[1]) - 0.16
	}
	ubis, vbis := xyz_to_uv(x, y, z)
	un, vn := xyz_to_uv(wref[0], wref[1], wref[2])
	u = 13.0 * l * (ubis - un)
	v = 13.0 * l * (vbis - vn)
	return
}

// For this part, we do as R's graphics.hcl does, not as wikipedia does.
// Or is it the same?
func xyz_to_uv(x, y, z float64) (u, v float64) {
	denom := x + 15.0*y + 3.0*z
	if denom == 0.0 {
		u, v = 0.0, 0.0
	} else {
		u = 4.0 * x / denom
		v = 9.0 * y / denom
	}
	return
}

func LuvToXyz(l, u, v float64) (x, y, z float64) {
	// D65 white (see above).
	return LuvToXyzWhiteRef(l, u, v, D65)
}

func LuvToXyzWhiteRef(l, u, v float64, wref [3]float64) (x, y, z float64) {
	//y = wref[1] * lab_finv((l + 0.16) / 1.16)
	if l <= 0.08 {
		y = wref[1] * l * 100.0 * 3.0 / 29.0 * 3.0 / 29.0 * 3.0 / 29.0
	} else {
		y = wref[1] * cub((l+0.16)/1.16)
	}
	un, vn := xyz_to_uv(wref[0], wref[1], wref[2])
	if l != 0.0 {
		ubis := u/(13.0*l) + un
		vbis := v/(13.0*l) + vn
		x = y * 9.0 * ubis / (4.0 * vbis)
		z = y * (12.0 - 3.0*ubis - 20.0*vbis) / (4.0 * vbis)
	} else {
		x, y = 0.0, 0.0
	}
	return
}

// Converts the given color to CIE L*u*v* space using D65 as reference white.
// L* is in [0..1] and both u* and v* are in about [-1..1]
func (col Color) Luv() (l, u, v float64) {
	return XyzToLuv(col.Xyz())
}

// Converts the given color to CIE L*u*v* space, taking into account
// a given reference white. (i.e. the monitor's white)
// L* is in [0..1] and both u* and v* are in about [-1..1]
func (col Color) LuvWhiteRef(wref [3]float64) (l, u, v float64) {
	x, y, z := col.Xyz()
	return XyzToLuvWhiteRef(x, y, z, wref)
}

// Generates a color by using data given in CIE L*u*v* space using D65 as reference white.
// L* is in [0..1] and both u* and v* are in about [-1..1]
// WARNING: many combinations of `l`, `a`, and `b` values do not have corresponding
//          valid RGB values, check the FAQ in the README if you're unsure.
func Luv(l, u, v float64) Color {
	return Xyz(LuvToXyz(l, u, v))
}

// Generates a color by using data given in CIE L*u*v* space, taking
// into account a given reference white. (i.e. the monitor's white)
// L* is in [0..1] and both u* and v* are in about [-1..1]
func LuvWhiteRef(l, u, v float64, wref [3]float64) Color {
	return Xyz(LuvToXyzWhiteRef(l, u, v, wref))
}

// DistanceLuv is a good measure of visual similarity between two colors!
// A result of 0 would mean identical colors, while a result of 1 or higher
// means the colors differ a lot.
func (c1 Color) DistanceLuv(c2 Color) float64 {
	l1, u1, v1 := c1.Luv()
	l2, u2, v2 := c2.Luv()
	return math.Sqrt(sq(l1-l2) + sq(u1-u2) + sq(v1-v2))
}

// BlendLuv blends two colors in the CIE-L*u*v* color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (c1 Color) BlendLuv(c2 Color, t float64) Color {
	l1, u1, v1 := c1.Luv()
	l2, u2, v2 := c2.Luv()
	return Luv(l1+t*(l2-l1),
		u1+t*(u2-u1),
		v1+t*(v2-v1))
}

/// HCL ///
///////////
// HCL is nothing else than L*a*b* in cylindrical coordinates!
// (this was wrong on English wikipedia, I fixed it, let's hope the fix stays.)
// But it is widely popular since it is a "correct HSV"
// http://www.hunterlab.com/appnotes/an09_96a.pdf

// Converts the given color to HCL space using D65 as reference white.
// H values are in [0..360], C and L values are in [0..1] although C can overshoot 1.0
func (col Color) Hcl() (h, c, l float64) {
	return col.HclWhiteRef(D65)
}

func LabToHcl(L, a, b float64) (h, c, l float64) {
	// Oops, floating point workaround necessary if a ~= b and both are very small (i.e. almost zero).
	if math.Abs(b-a) > 1e-4 && math.Abs(a) > 1e-4 {
		h = math.Mod(57.29577951308232087721*math.Atan2(b, a)+360.0, 360.0) // Rad2Deg
	} else {
		h = 0.0
	}
	c = math.Sqrt(sq(a) + sq(b))
	l = L
	return
}

// Converts the given color to HCL space, taking into account
// a given reference white. (i.e. the monitor's white)
// H values are in [0..360], C and L values are in [0..1]
func (col Color) HclWhiteRef(wref [3]float64) (h, c, l float64) {
	L, a, b := col.LabWhiteRef(wref)
	return LabToHcl(L, a, b)
}

// Generates a color by using data given in HCL space using D65 as reference white.
// H values are in [0..360], C and L values are in [0..1]
// WARNING: many combinations of `l`, `a`, and `b` values do not have corresponding
//          valid RGB values, check the FAQ in the README if you're unsure.
func Hcl(h, c, l float64) Color {
	return HclWhiteRef(h, c, l, D65)
}

func HclToLab(h, c, l float64) (L, a, b float64) {
	H := 0.01745329251994329576 * h // Deg2Rad
	a = c * math.Cos(H)
	b = c * math.Sin(H)
	L = l
	return
}

// Generates a color by using data given in HCL space, taking
// into account a given reference white. (i.e. the monitor's white)
// H values are in [0..360], C and L values are in [0..1]
func HclWhiteRef(h, c, l float64, wref [3]float64) Color {
	L, a, b := HclToLab(h, c, l)
	return LabWhiteRef(L, a, b, wref)
}

// BlendHcl blends two colors in the CIE-L*C*h° color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (col1 Color) BlendHcl(col2 Color, t float64) Color {
	h1, c1, l1 := col1.Hcl()
	h2, c2, l2 := col2.Hcl()

	// We know that h are both in [0..360]
	return Hcl(interp_angle(h1, h2, t), c1+t*(c2-c1), l1+t*(l2-l1))
}