aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/tiff/writer.go
blob: c8a01cea71c7e814b25a7874bdb1ef08da4c2f42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package tiff

import (
	"bytes"
	"compress/zlib"
	"encoding/binary"
	"image"
	"io"
	"sort"
)

// The TIFF format allows to choose the order of the different elements freely.
// The basic structure of a TIFF file written by this package is:
//
//   1. Header (8 bytes).
//   2. Image data.
//   3. Image File Directory (IFD).
//   4. "Pointer area" for larger entries in the IFD.

// We only write little-endian TIFF files.
var enc = binary.LittleEndian

// An ifdEntry is a single entry in an Image File Directory.
// A value of type dtRational is composed of two 32-bit values,
// thus data contains two uints (numerator and denominator) for a single number.
type ifdEntry struct {
	tag      int
	datatype int
	data     []uint32
}

func (e ifdEntry) putData(p []byte) {
	for _, d := range e.data {
		switch e.datatype {
		case dtByte, dtASCII:
			p[0] = byte(d)
			p = p[1:]
		case dtShort:
			enc.PutUint16(p, uint16(d))
			p = p[2:]
		case dtLong, dtRational:
			enc.PutUint32(p, uint32(d))
			p = p[4:]
		}
	}
}

type byTag []ifdEntry

func (d byTag) Len() int           { return len(d) }
func (d byTag) Less(i, j int) bool { return d[i].tag < d[j].tag }
func (d byTag) Swap(i, j int)      { d[i], d[j] = d[j], d[i] }

func encodeGray(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
	if !predictor {
		return writePix(w, pix, dy, dx, stride)
	}
	buf := make([]byte, dx)
	for y := 0; y < dy; y++ {
		min := y*stride + 0
		max := y*stride + dx
		off := 0
		var v0 uint8
		for i := min; i < max; i++ {
			v1 := pix[i]
			buf[off] = v1 - v0
			v0 = v1
			off++
		}
		if _, err := w.Write(buf); err != nil {
			return err
		}
	}
	return nil
}

func encodeGray16(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
	buf := make([]byte, dx*2)
	for y := 0; y < dy; y++ {
		min := y*stride + 0
		max := y*stride + dx*2
		off := 0
		var v0 uint16
		for i := min; i < max; i += 2 {
			// An image.Gray16's Pix is in big-endian order.
			v1 := uint16(pix[i])<<8 | uint16(pix[i+1])
			if predictor {
				v0, v1 = v1, v1-v0
			}
			// We only write little-endian TIFF files.
			buf[off+0] = byte(v1)
			buf[off+1] = byte(v1 >> 8)
			off += 2
		}
		if _, err := w.Write(buf); err != nil {
			return err
		}
	}
	return nil
}

func encodeRGBA(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
	if !predictor {
		return writePix(w, pix, dy, dx*4, stride)
	}
	buf := make([]byte, dx*4)
	for y := 0; y < dy; y++ {
		min := y*stride + 0
		max := y*stride + dx*4
		off := 0
		var r0, g0, b0, a0 uint8
		for i := min; i < max; i += 4 {
			r1, g1, b1, a1 := pix[i+0], pix[i+1], pix[i+2], pix[i+3]
			buf[off+0] = r1 - r0
			buf[off+1] = g1 - g0
			buf[off+2] = b1 - b0
			buf[off+3] = a1 - a0
			off += 4
			r0, g0, b0, a0 = r1, g1, b1, a1
		}
		if _, err := w.Write(buf); err != nil {
			return err
		}
	}
	return nil
}

func encodeRGBA64(w io.Writer, pix []uint8, dx, dy, stride int, predictor bool) error {
	buf := make([]byte, dx*8)
	for y := 0; y < dy; y++ {
		min := y*stride + 0
		max := y*stride + dx*8
		off := 0
		var r0, g0, b0, a0 uint16
		for i := min; i < max; i += 8 {
			// An image.RGBA64's Pix is in big-endian order.
			r1 := uint16(pix[i+0])<<8 | uint16(pix[i+1])
			g1 := uint16(pix[i+2])<<8 | uint16(pix[i+3])
			b1 := uint16(pix[i+4])<<8 | uint16(pix[i+5])
			a1 := uint16(pix[i+6])<<8 | uint16(pix[i+7])
			if predictor {
				r0, r1 = r1, r1-r0
				g0, g1 = g1, g1-g0
				b0, b1 = b1, b1-b0
				a0, a1 = a1, a1-a0
			}
			// We only write little-endian TIFF files.
			buf[off+0] = byte(r1)
			buf[off+1] = byte(r1 >> 8)
			buf[off+2] = byte(g1)
			buf[off+3] = byte(g1 >> 8)
			buf[off+4] = byte(b1)
			buf[off+5] = byte(b1 >> 8)
			buf[off+6] = byte(a1)
			buf[off+7] = byte(a1 >> 8)
			off += 8
		}
		if _, err := w.Write(buf); err != nil {
			return err
		}
	}
	return nil
}

func encode(w io.Writer, m image.Image, predictor bool) error {
	bounds := m.Bounds()
	buf := make([]byte, 4*bounds.Dx())
	for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
		off := 0
		if predictor {
			var r0, g0, b0, a0 uint8
			for x := bounds.Min.X; x < bounds.Max.X; x++ {
				r, g, b, a := m.At(x, y).RGBA()
				r1 := uint8(r >> 8)
				g1 := uint8(g >> 8)
				b1 := uint8(b >> 8)
				a1 := uint8(a >> 8)
				buf[off+0] = r1 - r0
				buf[off+1] = g1 - g0
				buf[off+2] = b1 - b0
				buf[off+3] = a1 - a0
				off += 4
				r0, g0, b0, a0 = r1, g1, b1, a1
			}
		} else {
			for x := bounds.Min.X; x < bounds.Max.X; x++ {
				r, g, b, a := m.At(x, y).RGBA()
				buf[off+0] = uint8(r >> 8)
				buf[off+1] = uint8(g >> 8)
				buf[off+2] = uint8(b >> 8)
				buf[off+3] = uint8(a >> 8)
				off += 4
			}
		}
		if _, err := w.Write(buf); err != nil {
			return err
		}
	}
	return nil
}

// writePix writes the internal byte array of an image to w. It is less general
// but much faster then encode. writePix is used when pix directly
// corresponds to one of the TIFF image types.
func writePix(w io.Writer, pix []byte, nrows, length, stride int) error {
	if length == stride {
		_, err := w.Write(pix[:nrows*length])
		return err
	}
	for ; nrows > 0; nrows-- {
		if _, err := w.Write(pix[:length]); err != nil {
			return err
		}
		pix = pix[stride:]
	}
	return nil
}

func writeIFD(w io.Writer, ifdOffset int, d []ifdEntry) error {
	var buf [ifdLen]byte
	// Make space for "pointer area" containing IFD entry data
	// longer than 4 bytes.
	parea := make([]byte, 1024)
	pstart := ifdOffset + ifdLen*len(d) + 6
	var o int // Current offset in parea.

	// The IFD has to be written with the tags in ascending order.
	sort.Sort(byTag(d))

	// Write the number of entries in this IFD.
	if err := binary.Write(w, enc, uint16(len(d))); err != nil {
		return err
	}
	for _, ent := range d {
		enc.PutUint16(buf[0:2], uint16(ent.tag))
		enc.PutUint16(buf[2:4], uint16(ent.datatype))
		count := uint32(len(ent.data))
		if ent.datatype == dtRational {
			count /= 2
		}
		enc.PutUint32(buf[4:8], count)
		datalen := int(count * lengths[ent.datatype])
		if datalen <= 4 {
			ent.putData(buf[8:12])
		} else {
			if (o + datalen) > len(parea) {
				newlen := len(parea) + 1024
				for (o + datalen) > newlen {
					newlen += 1024
				}
				newarea := make([]byte, newlen)
				copy(newarea, parea)
				parea = newarea
			}
			ent.putData(parea[o : o+datalen])
			enc.PutUint32(buf[8:12], uint32(pstart+o))
			o += datalen
		}
		if _, err := w.Write(buf[:]); err != nil {
			return err
		}
	}
	// The IFD ends with the offset of the next IFD in the file,
	// or zero if it is the last one (page 14).
	if err := binary.Write(w, enc, uint32(0)); err != nil {
		return err
	}
	_, err := w.Write(parea[:o])
	return err
}

// Options are the encoding parameters.
type Options struct {
	// Compression is the type of compression used.
	Compression CompressionType
	// Predictor determines whether a differencing predictor is used;
	// if true, instead of each pixel's color, the color difference to the
	// preceding one is saved.  This improves the compression for certain
	// types of images and compressors. For example, it works well for
	// photos with Deflate compression.
	Predictor bool
}

// Encode writes the image m to w. opt determines the options used for
// encoding, such as the compression type. If opt is nil, an uncompressed
// image is written.
func Encode(w io.Writer, m image.Image, opt *Options) error {
	d := m.Bounds().Size()

	compression := uint32(cNone)
	predictor := false
	if opt != nil {
		compression = opt.Compression.specValue()
		// The predictor field is only used with LZW. See page 64 of the spec.
		predictor = opt.Predictor && compression == cLZW
	}

	_, err := io.WriteString(w, leHeader)
	if err != nil {
		return err
	}

	// Compressed data is written into a buffer first, so that we
	// know the compressed size.
	var buf bytes.Buffer
	// dst holds the destination for the pixel data of the image --
	// either w or a writer to buf.
	var dst io.Writer
	// imageLen is the length of the pixel data in bytes.
	// The offset of the IFD is imageLen + 8 header bytes.
	var imageLen int

	switch compression {
	case cNone:
		dst = w
		// Write IFD offset before outputting pixel data.
		switch m.(type) {
		case *image.Paletted:
			imageLen = d.X * d.Y * 1
		case *image.Gray:
			imageLen = d.X * d.Y * 1
		case *image.Gray16:
			imageLen = d.X * d.Y * 2
		case *image.RGBA64:
			imageLen = d.X * d.Y * 8
		case *image.NRGBA64:
			imageLen = d.X * d.Y * 8
		default:
			imageLen = d.X * d.Y * 4
		}
		err = binary.Write(w, enc, uint32(imageLen+8))
		if err != nil {
			return err
		}
	case cDeflate:
		dst = zlib.NewWriter(&buf)
	}

	pr := uint32(prNone)
	photometricInterpretation := uint32(pRGB)
	samplesPerPixel := uint32(4)
	bitsPerSample := []uint32{8, 8, 8, 8}
	extraSamples := uint32(0)
	colorMap := []uint32{}

	if predictor {
		pr = prHorizontal
	}
	switch m := m.(type) {
	case *image.Paletted:
		photometricInterpretation = pPaletted
		samplesPerPixel = 1
		bitsPerSample = []uint32{8}
		colorMap = make([]uint32, 256*3)
		for i := 0; i < 256 && i < len(m.Palette); i++ {
			r, g, b, _ := m.Palette[i].RGBA()
			colorMap[i+0*256] = uint32(r)
			colorMap[i+1*256] = uint32(g)
			colorMap[i+2*256] = uint32(b)
		}
		err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.Gray:
		photometricInterpretation = pBlackIsZero
		samplesPerPixel = 1
		bitsPerSample = []uint32{8}
		err = encodeGray(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.Gray16:
		photometricInterpretation = pBlackIsZero
		samplesPerPixel = 1
		bitsPerSample = []uint32{16}
		err = encodeGray16(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.NRGBA:
		extraSamples = 2 // Unassociated alpha.
		err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.NRGBA64:
		extraSamples = 2 // Unassociated alpha.
		bitsPerSample = []uint32{16, 16, 16, 16}
		err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.RGBA:
		extraSamples = 1 // Associated alpha.
		err = encodeRGBA(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	case *image.RGBA64:
		extraSamples = 1 // Associated alpha.
		bitsPerSample = []uint32{16, 16, 16, 16}
		err = encodeRGBA64(dst, m.Pix, d.X, d.Y, m.Stride, predictor)
	default:
		extraSamples = 1 // Associated alpha.
		err = encode(dst, m, predictor)
	}
	if err != nil {
		return err
	}

	if compression != cNone {
		if err = dst.(io.Closer).Close(); err != nil {
			return err
		}
		imageLen = buf.Len()
		if err = binary.Write(w, enc, uint32(imageLen+8)); err != nil {
			return err
		}
		if _, err = buf.WriteTo(w); err != nil {
			return err
		}
	}

	ifd := []ifdEntry{
		{tImageWidth, dtShort, []uint32{uint32(d.X)}},
		{tImageLength, dtShort, []uint32{uint32(d.Y)}},
		{tBitsPerSample, dtShort, bitsPerSample},
		{tCompression, dtShort, []uint32{compression}},
		{tPhotometricInterpretation, dtShort, []uint32{photometricInterpretation}},
		{tStripOffsets, dtLong, []uint32{8}},
		{tSamplesPerPixel, dtShort, []uint32{samplesPerPixel}},
		{tRowsPerStrip, dtShort, []uint32{uint32(d.Y)}},
		{tStripByteCounts, dtLong, []uint32{uint32(imageLen)}},
		// There is currently no support for storing the image
		// resolution, so give a bogus value of 72x72 dpi.
		{tXResolution, dtRational, []uint32{72, 1}},
		{tYResolution, dtRational, []uint32{72, 1}},
		{tResolutionUnit, dtShort, []uint32{resPerInch}},
	}
	if pr != prNone {
		ifd = append(ifd, ifdEntry{tPredictor, dtShort, []uint32{pr}})
	}
	if len(colorMap) != 0 {
		ifd = append(ifd, ifdEntry{tColorMap, dtShort, colorMap})
	}
	if extraSamples > 0 {
		ifd = append(ifd, ifdEntry{tExtraSamples, dtShort, []uint32{extraSamples}})
	}

	return writeIFD(w, imageLen+8, ifd)
}