aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vp8l/decode.go
blob: 431948701676b13765c76e7febaa2da2365b1efe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package vp8l implements a decoder for the VP8L lossless image format.
//
// The VP8L specification is at:
// https://developers.google.com/speed/webp/docs/riff_container
package vp8l // import "golang.org/x/image/vp8l"

import (
	"bufio"
	"errors"
	"image"
	"image/color"
	"io"
)

var (
	errInvalidCodeLengths = errors.New("vp8l: invalid code lengths")
	errInvalidHuffmanTree = errors.New("vp8l: invalid Huffman tree")
)

// colorCacheMultiplier is the multiplier used for the color cache hash
// function, specified in section 4.2.3.
const colorCacheMultiplier = 0x1e35a7bd

// distanceMapTable is the look-up table for distanceMap.
var distanceMapTable = [120]uint8{
	0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
	0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
	0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
	0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
	0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
	0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
	0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
	0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
	0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
	0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
	0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
	0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70,
}

// distanceMap maps a LZ77 backwards reference distance to a two-dimensional
// pixel offset, specified in section 4.2.2.
func distanceMap(w int32, code uint32) int32 {
	if int32(code) > int32(len(distanceMapTable)) {
		return int32(code) - int32(len(distanceMapTable))
	}
	distCode := int32(distanceMapTable[code-1])
	yOffset := distCode >> 4
	xOffset := 8 - distCode&0xf
	if d := yOffset*w + xOffset; d >= 1 {
		return d
	}
	return 1
}

// decoder holds the bit-stream for a VP8L image.
type decoder struct {
	r     io.ByteReader
	bits  uint32
	nBits uint32
}

// read reads the next n bits from the decoder's bit-stream.
func (d *decoder) read(n uint32) (uint32, error) {
	for d.nBits < n {
		c, err := d.r.ReadByte()
		if err != nil {
			if err == io.EOF {
				err = io.ErrUnexpectedEOF
			}
			return 0, err
		}
		d.bits |= uint32(c) << d.nBits
		d.nBits += 8
	}
	u := d.bits & (1<<n - 1)
	d.bits >>= n
	d.nBits -= n
	return u, nil
}

// decodeTransform decodes the next transform and the width of the image after
// transformation (or equivalently, before inverse transformation), specified
// in section 3.
func (d *decoder) decodeTransform(w int32, h int32) (t transform, newWidth int32, err error) {
	t.oldWidth = w
	t.transformType, err = d.read(2)
	if err != nil {
		return transform{}, 0, err
	}
	switch t.transformType {
	case transformTypePredictor, transformTypeCrossColor:
		t.bits, err = d.read(3)
		if err != nil {
			return transform{}, 0, err
		}
		t.bits += 2
		t.pix, err = d.decodePix(nTiles(w, t.bits), nTiles(h, t.bits), 0, false)
		if err != nil {
			return transform{}, 0, err
		}
	case transformTypeSubtractGreen:
		// No-op.
	case transformTypeColorIndexing:
		nColors, err := d.read(8)
		if err != nil {
			return transform{}, 0, err
		}
		nColors++
		t.bits = 0
		switch {
		case nColors <= 2:
			t.bits = 3
		case nColors <= 4:
			t.bits = 2
		case nColors <= 16:
			t.bits = 1
		}
		w = nTiles(w, t.bits)
		pix, err := d.decodePix(int32(nColors), 1, 4*256, false)
		if err != nil {
			return transform{}, 0, err
		}
		for p := 4; p < len(pix); p += 4 {
			pix[p+0] += pix[p-4]
			pix[p+1] += pix[p-3]
			pix[p+2] += pix[p-2]
			pix[p+3] += pix[p-1]
		}
		// The spec says that "if the index is equal or larger than color_table_size,
		// the argb color value should be set to 0x00000000 (transparent black)."
		// We re-slice up to 256 4-byte pixels.
		t.pix = pix[:4*256]
	}
	return t, w, nil
}

// repeatsCodeLength is the minimum code length for repeated codes.
const repeatsCodeLength = 16

// These magic numbers are specified at the end of section 5.2.2.
// The 3-length arrays apply to code lengths >= repeatsCodeLength.
var (
	codeLengthCodeOrder = [19]uint8{
		17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
	}
	repeatBits    = [3]uint8{2, 3, 7}
	repeatOffsets = [3]uint8{3, 3, 11}
)

// decodeCodeLengths decodes a Huffman tree's code lengths which are themselves
// encoded via a Huffman tree, specified in section 5.2.2.
func (d *decoder) decodeCodeLengths(dst []uint32, codeLengthCodeLengths []uint32) error {
	h := hTree{}
	if err := h.build(codeLengthCodeLengths); err != nil {
		return err
	}

	maxSymbol := len(dst)
	useLength, err := d.read(1)
	if err != nil {
		return err
	}
	if useLength != 0 {
		n, err := d.read(3)
		if err != nil {
			return err
		}
		n = 2 + 2*n
		ms, err := d.read(n)
		if err != nil {
			return err
		}
		maxSymbol = int(ms) + 2
		if maxSymbol > len(dst) {
			return errInvalidCodeLengths
		}
	}

	// The spec says that "if code 16 [meaning repeat] is used before
	// a non-zero value has been emitted, a value of 8 is repeated."
	prevCodeLength := uint32(8)

	for symbol := 0; symbol < len(dst); {
		if maxSymbol == 0 {
			break
		}
		maxSymbol--
		codeLength, err := h.next(d)
		if err != nil {
			return err
		}
		if codeLength < repeatsCodeLength {
			dst[symbol] = codeLength
			symbol++
			if codeLength != 0 {
				prevCodeLength = codeLength
			}
			continue
		}

		repeat, err := d.read(uint32(repeatBits[codeLength-repeatsCodeLength]))
		if err != nil {
			return err
		}
		repeat += uint32(repeatOffsets[codeLength-repeatsCodeLength])
		if symbol+int(repeat) > len(dst) {
			return errInvalidCodeLengths
		}
		// A code length of 16 repeats the previous non-zero code.
		// A code length of 17 or 18 repeats zeroes.
		cl := uint32(0)
		if codeLength == 16 {
			cl = prevCodeLength
		}
		for ; repeat > 0; repeat-- {
			dst[symbol] = cl
			symbol++
		}
	}
	return nil
}

// decodeHuffmanTree decodes a Huffman tree into h.
func (d *decoder) decodeHuffmanTree(h *hTree, alphabetSize uint32) error {
	useSimple, err := d.read(1)
	if err != nil {
		return err
	}
	if useSimple != 0 {
		nSymbols, err := d.read(1)
		if err != nil {
			return err
		}
		nSymbols++
		firstSymbolLengthCode, err := d.read(1)
		if err != nil {
			return err
		}
		firstSymbolLengthCode = 7*firstSymbolLengthCode + 1
		var symbols [2]uint32
		symbols[0], err = d.read(firstSymbolLengthCode)
		if err != nil {
			return err
		}
		if nSymbols == 2 {
			symbols[1], err = d.read(8)
			if err != nil {
				return err
			}
		}
		return h.buildSimple(nSymbols, symbols, alphabetSize)
	}

	nCodes, err := d.read(4)
	if err != nil {
		return err
	}
	nCodes += 4
	if int(nCodes) > len(codeLengthCodeOrder) {
		return errInvalidHuffmanTree
	}
	codeLengthCodeLengths := [len(codeLengthCodeOrder)]uint32{}
	for i := uint32(0); i < nCodes; i++ {
		codeLengthCodeLengths[codeLengthCodeOrder[i]], err = d.read(3)
		if err != nil {
			return err
		}
	}
	codeLengths := make([]uint32, alphabetSize)
	if err = d.decodeCodeLengths(codeLengths, codeLengthCodeLengths[:]); err != nil {
		return err
	}
	return h.build(codeLengths)
}

const (
	huffGreen    = 0
	huffRed      = 1
	huffBlue     = 2
	huffAlpha    = 3
	huffDistance = 4
	nHuff        = 5
)

// hGroup is an array of 5 Huffman trees.
type hGroup [nHuff]hTree

// decodeHuffmanGroups decodes the one or more hGroups used to decode the pixel
// data. If one hGroup is used for the entire image, then hPix and hBits will
// be zero. If more than one hGroup is used, then hPix contains the meta-image
// that maps tiles to hGroup index, and hBits contains the log-2 tile size.
func (d *decoder) decodeHuffmanGroups(w int32, h int32, topLevel bool, ccBits uint32) (
	hGroups []hGroup, hPix []byte, hBits uint32, err error) {

	maxHGroupIndex := 0
	if topLevel {
		useMeta, err := d.read(1)
		if err != nil {
			return nil, nil, 0, err
		}
		if useMeta != 0 {
			hBits, err = d.read(3)
			if err != nil {
				return nil, nil, 0, err
			}
			hBits += 2
			hPix, err = d.decodePix(nTiles(w, hBits), nTiles(h, hBits), 0, false)
			if err != nil {
				return nil, nil, 0, err
			}
			for p := 0; p < len(hPix); p += 4 {
				i := int(hPix[p])<<8 | int(hPix[p+1])
				if maxHGroupIndex < i {
					maxHGroupIndex = i
				}
			}
		}
	}
	hGroups = make([]hGroup, maxHGroupIndex+1)
	for i := range hGroups {
		for j, alphabetSize := range alphabetSizes {
			if j == 0 && ccBits > 0 {
				alphabetSize += 1 << ccBits
			}
			if err := d.decodeHuffmanTree(&hGroups[i][j], alphabetSize); err != nil {
				return nil, nil, 0, err
			}
		}
	}
	return hGroups, hPix, hBits, nil
}

const (
	nLiteralCodes  = 256
	nLengthCodes   = 24
	nDistanceCodes = 40
)

var alphabetSizes = [nHuff]uint32{
	nLiteralCodes + nLengthCodes,
	nLiteralCodes,
	nLiteralCodes,
	nLiteralCodes,
	nDistanceCodes,
}

// decodePix decodes pixel data, specified in section 5.2.2.
func (d *decoder) decodePix(w int32, h int32, minCap int32, topLevel bool) ([]byte, error) {
	// Decode the color cache parameters.
	ccBits, ccShift, ccEntries := uint32(0), uint32(0), ([]uint32)(nil)
	useColorCache, err := d.read(1)
	if err != nil {
		return nil, err
	}
	if useColorCache != 0 {
		ccBits, err = d.read(4)
		if err != nil {
			return nil, err
		}
		if ccBits < 1 || 11 < ccBits {
			return nil, errors.New("vp8l: invalid color cache parameters")
		}
		ccShift = 32 - ccBits
		ccEntries = make([]uint32, 1<<ccBits)
	}

	// Decode the Huffman groups.
	hGroups, hPix, hBits, err := d.decodeHuffmanGroups(w, h, topLevel, ccBits)
	if err != nil {
		return nil, err
	}
	hMask, tilesPerRow := int32(0), int32(0)
	if hBits != 0 {
		hMask, tilesPerRow = 1<<hBits-1, nTiles(w, hBits)
	}

	// Decode the pixels.
	if minCap < 4*w*h {
		minCap = 4 * w * h
	}
	pix := make([]byte, 4*w*h, minCap)
	p, cachedP := 0, 0
	x, y := int32(0), int32(0)
	hg, lookupHG := &hGroups[0], hMask != 0
	for p < len(pix) {
		if lookupHG {
			i := 4 * (tilesPerRow*(y>>hBits) + (x >> hBits))
			hg = &hGroups[uint32(hPix[i])<<8|uint32(hPix[i+1])]
		}

		green, err := hg[huffGreen].next(d)
		if err != nil {
			return nil, err
		}
		switch {
		case green < nLiteralCodes:
			// We have a literal pixel.
			red, err := hg[huffRed].next(d)
			if err != nil {
				return nil, err
			}
			blue, err := hg[huffBlue].next(d)
			if err != nil {
				return nil, err
			}
			alpha, err := hg[huffAlpha].next(d)
			if err != nil {
				return nil, err
			}
			pix[p+0] = uint8(red)
			pix[p+1] = uint8(green)
			pix[p+2] = uint8(blue)
			pix[p+3] = uint8(alpha)
			p += 4

			x++
			if x == w {
				x, y = 0, y+1
			}
			lookupHG = hMask != 0 && x&hMask == 0

		case green < nLiteralCodes+nLengthCodes:
			// We have a LZ77 backwards reference.
			length, err := d.lz77Param(green - nLiteralCodes)
			if err != nil {
				return nil, err
			}
			distSym, err := hg[huffDistance].next(d)
			if err != nil {
				return nil, err
			}
			distCode, err := d.lz77Param(distSym)
			if err != nil {
				return nil, err
			}
			dist := distanceMap(w, distCode)
			pEnd := p + 4*int(length)
			q := p - 4*int(dist)
			qEnd := pEnd - 4*int(dist)
			if p < 0 || len(pix) < pEnd || q < 0 || len(pix) < qEnd {
				return nil, errors.New("vp8l: invalid LZ77 parameters")
			}
			for ; p < pEnd; p, q = p+1, q+1 {
				pix[p] = pix[q]
			}

			x += int32(length)
			for x >= w {
				x, y = x-w, y+1
			}
			lookupHG = hMask != 0

		default:
			// We have a color cache lookup. First, insert previous pixels
			// into the cache. Note that VP8L assumes ARGB order, but the
			// Go image.RGBA type is in RGBA order.
			for ; cachedP < p; cachedP += 4 {
				argb := uint32(pix[cachedP+0])<<16 |
					uint32(pix[cachedP+1])<<8 |
					uint32(pix[cachedP+2])<<0 |
					uint32(pix[cachedP+3])<<24
				ccEntries[(argb*colorCacheMultiplier)>>ccShift] = argb
			}
			green -= nLiteralCodes + nLengthCodes
			if int(green) >= len(ccEntries) {
				return nil, errors.New("vp8l: invalid color cache index")
			}
			argb := ccEntries[green]
			pix[p+0] = uint8(argb >> 16)
			pix[p+1] = uint8(argb >> 8)
			pix[p+2] = uint8(argb >> 0)
			pix[p+3] = uint8(argb >> 24)
			p += 4

			x++
			if x == w {
				x, y = 0, y+1
			}
			lookupHG = hMask != 0 && x&hMask == 0
		}
	}
	return pix, nil
}

// lz77Param returns the next LZ77 parameter: a length or a distance, specified
// in section 4.2.2.
func (d *decoder) lz77Param(symbol uint32) (uint32, error) {
	if symbol < 4 {
		return symbol + 1, nil
	}
	extraBits := (symbol - 2) >> 1
	offset := (2 + symbol&1) << extraBits
	n, err := d.read(extraBits)
	if err != nil {
		return 0, err
	}
	return offset + n + 1, nil
}

// decodeHeader decodes the VP8L header from r.
func decodeHeader(r io.Reader) (d *decoder, w int32, h int32, err error) {
	rr, ok := r.(io.ByteReader)
	if !ok {
		rr = bufio.NewReader(r)
	}
	d = &decoder{r: rr}
	magic, err := d.read(8)
	if err != nil {
		return nil, 0, 0, err
	}
	if magic != 0x2f {
		return nil, 0, 0, errors.New("vp8l: invalid header")
	}
	width, err := d.read(14)
	if err != nil {
		return nil, 0, 0, err
	}
	width++
	height, err := d.read(14)
	if err != nil {
		return nil, 0, 0, err
	}
	height++
	_, err = d.read(1) // Read and ignore the hasAlpha hint.
	if err != nil {
		return nil, 0, 0, err
	}
	version, err := d.read(3)
	if err != nil {
		return nil, 0, 0, err
	}
	if version != 0 {
		return nil, 0, 0, errors.New("vp8l: invalid version")
	}
	return d, int32(width), int32(height), nil
}

// DecodeConfig decodes the color model and dimensions of a VP8L image from r.
func DecodeConfig(r io.Reader) (image.Config, error) {
	_, w, h, err := decodeHeader(r)
	if err != nil {
		return image.Config{}, err
	}
	return image.Config{
		ColorModel: color.NRGBAModel,
		Width:      int(w),
		Height:     int(h),
	}, nil
}

// Decode decodes a VP8L image from r.
func Decode(r io.Reader) (image.Image, error) {
	d, w, h, err := decodeHeader(r)
	if err != nil {
		return nil, err
	}
	// Decode the transforms.
	var (
		nTransforms    int
		transforms     [nTransformTypes]transform
		transformsSeen [nTransformTypes]bool
		originalW      = w
	)
	for {
		more, err := d.read(1)
		if err != nil {
			return nil, err
		}
		if more == 0 {
			break
		}
		var t transform
		t, w, err = d.decodeTransform(w, h)
		if err != nil {
			return nil, err
		}
		if transformsSeen[t.transformType] {
			return nil, errors.New("vp8l: repeated transform")
		}
		transformsSeen[t.transformType] = true
		transforms[nTransforms] = t
		nTransforms++
	}
	// Decode the transformed pixels.
	pix, err := d.decodePix(w, h, 0, true)
	if err != nil {
		return nil, err
	}
	// Apply the inverse transformations.
	for i := nTransforms - 1; i >= 0; i-- {
		t := &transforms[i]
		pix = inverseTransforms[t.transformType](t, pix, h)
	}
	return &image.NRGBA{
		Pix:    pix,
		Stride: 4 * int(originalW),
		Rect:   image.Rect(0, 0, int(originalW), int(h)),
	}, nil
}