aboutsummaryrefslogtreecommitdiff
path: root/vendor/golang.org/x/image/vp8l/huffman.go
blob: 36368a872b9391c04e33ee2f9038ab52021b8931 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vp8l

import (
	"io"
)

// reverseBits reverses the bits in a byte.
var reverseBits = [256]uint8{
	0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
	0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
	0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
	0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
	0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
	0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
	0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
	0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
	0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
	0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
	0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
	0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
	0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
	0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
	0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
	0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
}

// hNode is a node in a Huffman tree.
type hNode struct {
	// symbol is the symbol held by this node.
	symbol uint32
	// children, if positive, is the hTree.nodes index of the first of
	// this node's two children. Zero means an uninitialized node,
	// and -1 means a leaf node.
	children int32
}

const leafNode = -1

// lutSize is the log-2 size of an hTree's look-up table.
const lutSize, lutMask = 7, 1<<7 - 1

// hTree is a Huffman tree.
type hTree struct {
	// nodes are the nodes of the Huffman tree. During construction,
	// len(nodes) grows from 1 up to cap(nodes) by steps of two.
	// After construction, len(nodes) == cap(nodes), and both equal
	// 2*theNumberOfSymbols - 1.
	nodes []hNode
	// lut is a look-up table for walking the nodes. The x in lut[x] is
	// the next lutSize bits in the bit-stream. The low 8 bits of lut[x]
	// equals 1 plus the number of bits in the next code, or 0 if the
	// next code requires more than lutSize bits. The high 24 bits are:
	//   - the symbol, if the code requires lutSize or fewer bits, or
	//   - the hTree.nodes index to start the tree traversal from, if
	//     the next code requires more than lutSize bits.
	lut [1 << lutSize]uint32
}

// insert inserts into the hTree a symbol whose encoding is the least
// significant codeLength bits of code.
func (h *hTree) insert(symbol uint32, code uint32, codeLength uint32) error {
	if symbol > 0xffff || codeLength > 0xfe {
		return errInvalidHuffmanTree
	}
	baseCode := uint32(0)
	if codeLength > lutSize {
		baseCode = uint32(reverseBits[(code>>(codeLength-lutSize))&0xff]) >> (8 - lutSize)
	} else {
		baseCode = uint32(reverseBits[code&0xff]) >> (8 - codeLength)
		for i := 0; i < 1<<(lutSize-codeLength); i++ {
			h.lut[baseCode|uint32(i)<<codeLength] = symbol<<8 | (codeLength + 1)
		}
	}

	n := uint32(0)
	for jump := lutSize; codeLength > 0; {
		codeLength--
		if int(n) > len(h.nodes) {
			return errInvalidHuffmanTree
		}
		switch h.nodes[n].children {
		case leafNode:
			return errInvalidHuffmanTree
		case 0:
			if len(h.nodes) == cap(h.nodes) {
				return errInvalidHuffmanTree
			}
			// Create two empty child nodes.
			h.nodes[n].children = int32(len(h.nodes))
			h.nodes = h.nodes[:len(h.nodes)+2]
		}
		n = uint32(h.nodes[n].children) + 1&(code>>codeLength)
		jump--
		if jump == 0 && h.lut[baseCode] == 0 {
			h.lut[baseCode] = n << 8
		}
	}

	switch h.nodes[n].children {
	case leafNode:
		// No-op.
	case 0:
		// Turn the uninitialized node into a leaf.
		h.nodes[n].children = leafNode
	default:
		return errInvalidHuffmanTree
	}
	h.nodes[n].symbol = symbol
	return nil
}

// codeLengthsToCodes returns the canonical Huffman codes implied by the
// sequence of code lengths.
func codeLengthsToCodes(codeLengths []uint32) ([]uint32, error) {
	maxCodeLength := uint32(0)
	for _, cl := range codeLengths {
		if maxCodeLength < cl {
			maxCodeLength = cl
		}
	}
	const maxAllowedCodeLength = 15
	if len(codeLengths) == 0 || maxCodeLength > maxAllowedCodeLength {
		return nil, errInvalidHuffmanTree
	}
	histogram := [maxAllowedCodeLength + 1]uint32{}
	for _, cl := range codeLengths {
		histogram[cl]++
	}
	currCode, nextCodes := uint32(0), [maxAllowedCodeLength + 1]uint32{}
	for cl := 1; cl < len(nextCodes); cl++ {
		currCode = (currCode + histogram[cl-1]) << 1
		nextCodes[cl] = currCode
	}
	codes := make([]uint32, len(codeLengths))
	for symbol, cl := range codeLengths {
		if cl > 0 {
			codes[symbol] = nextCodes[cl]
			nextCodes[cl]++
		}
	}
	return codes, nil
}

// build builds a canonical Huffman tree from the given code lengths.
func (h *hTree) build(codeLengths []uint32) error {
	// Calculate the number of symbols.
	var nSymbols, lastSymbol uint32
	for symbol, cl := range codeLengths {
		if cl != 0 {
			nSymbols++
			lastSymbol = uint32(symbol)
		}
	}
	if nSymbols == 0 {
		return errInvalidHuffmanTree
	}
	h.nodes = make([]hNode, 1, 2*nSymbols-1)
	// Handle the trivial case.
	if nSymbols == 1 {
		if len(codeLengths) <= int(lastSymbol) {
			return errInvalidHuffmanTree
		}
		return h.insert(lastSymbol, 0, 0)
	}
	// Handle the non-trivial case.
	codes, err := codeLengthsToCodes(codeLengths)
	if err != nil {
		return err
	}
	for symbol, cl := range codeLengths {
		if cl > 0 {
			if err := h.insert(uint32(symbol), codes[symbol], cl); err != nil {
				return err
			}
		}
	}
	return nil
}

// buildSimple builds a Huffman tree with 1 or 2 symbols.
func (h *hTree) buildSimple(nSymbols uint32, symbols [2]uint32, alphabetSize uint32) error {
	h.nodes = make([]hNode, 1, 2*nSymbols-1)
	for i := uint32(0); i < nSymbols; i++ {
		if symbols[i] >= alphabetSize {
			return errInvalidHuffmanTree
		}
		if err := h.insert(symbols[i], i, nSymbols-1); err != nil {
			return err
		}
	}
	return nil
}

// next returns the next Huffman-encoded symbol from the bit-stream d.
func (h *hTree) next(d *decoder) (uint32, error) {
	var n uint32
	// Read enough bits so that we can use the look-up table.
	if d.nBits < lutSize {
		c, err := d.r.ReadByte()
		if err != nil {
			if err == io.EOF {
				// There are no more bytes of data, but we may still be able
				// to read the next symbol out of the previously read bits.
				goto slowPath
			}
			return 0, err
		}
		d.bits |= uint32(c) << d.nBits
		d.nBits += 8
	}
	// Use the look-up table.
	n = h.lut[d.bits&lutMask]
	if b := n & 0xff; b != 0 {
		b--
		d.bits >>= b
		d.nBits -= b
		return n >> 8, nil
	}
	n >>= 8
	d.bits >>= lutSize
	d.nBits -= lutSize

slowPath:
	for h.nodes[n].children != leafNode {
		if d.nBits == 0 {
			c, err := d.r.ReadByte()
			if err != nil {
				if err == io.EOF {
					err = io.ErrUnexpectedEOF
				}
				return 0, err
			}
			d.bits = uint32(c)
			d.nBits = 8
		}
		n = uint32(h.nodes[n].children) + 1&d.bits
		d.bits >>= 1
		d.nBits--
	}
	return h.nodes[n].symbol, nil
}