diff options
author | Richard van der Hoff <richard@matrix.org> | 2019-11-08 14:09:12 +0000 |
---|---|---|
committer | Richard van der Hoff <richard@matrix.org> | 2019-11-08 14:09:12 +0000 |
commit | 04690658558fd84cd635ee8dd34b163cccfcf420 (patch) | |
tree | 6a00e91781d2efe8dfb112fa6ac64ee12b424986 | |
parent | baaf00266314487f831726d7cb34ee2649f99e22 (diff) | |
parent | 5bcfeaffe3d465a16e472e98c99d6970e8dc80d8 (diff) |
Merge branch 'rav/fix_math' into 'master'
Fix some math blocks
See merge request matrix-org/olm!10
-rw-r--r-- | docs/megolm.md | 8 | ||||
-rw-r--r-- | docs/olm.md | 39 | ||||
-rw-r--r-- | docs/signing.md | 12 |
3 files changed, 32 insertions, 27 deletions
diff --git a/docs/megolm.md b/docs/megolm.md index eaae7e0..baf4c5e 100644 --- a/docs/megolm.md +++ b/docs/megolm.md @@ -161,10 +161,10 @@ described in [The Megolm ratchet algorithm](#the-megolm-ratchet-algorithm), usin ```math \begin{aligned} - H_0(A) &\equiv \operatorname{HMAC}(A,\text{"\x00"}) \\ - H_1(A) &\equiv \operatorname{HMAC}(A,\text{"\x01"}) \\ - H_2(A) &\equiv \operatorname{HMAC}(A,\text{"\x02"}) \\ - H_3(A) &\equiv \operatorname{HMAC}(A,\text{"\x03"}) \\ + H_0(A) &\equiv \operatorname{HMAC}(A,\text{``\char`\\x00"}) \\ + H_1(A) &\equiv \operatorname{HMAC}(A,\text{``\char`\\x01"}) \\ + H_2(A) &\equiv \operatorname{HMAC}(A,\text{``\char`\\x02"}) \\ + H_3(A) &\equiv \operatorname{HMAC}(A,\text{``\char`\\x03"}) \\ \end{aligned} ``` diff --git a/docs/olm.md b/docs/olm.md index e9bb4ae..8648803 100644 --- a/docs/olm.md +++ b/docs/olm.md @@ -10,13 +10,13 @@ $`\parallel`$ appears on the right hand side of an $`=`$ it means that the inputs are concatenated. When $`\parallel`$ appears on the left hand side of an $`=`$ it means that the output is split. -When this document uses $`ECDH\left(K_A,\,K_B\right)`$ it means that each -party computes a Diffie-Hellman agreement using their private key and the -remote party's public key. -So party $`A`$ computes $`ECDH\left(K_B^{public},\,K_A^{private}\right)`$ -and party $`B`$ computes $`ECDH\left(K_A^{public},\,K_B^{private}\right)`$. +When this document uses $`\operatorname{ECDH}\left(K_A,K_B\right)`$ it means +that each party computes a Diffie-Hellman agreement using their private key +and the remote party's public key. +So party $`A`$ computes $`\operatorname{ECDH}\left(K_B^{public},K_A^{private}\right)`$ +and party $`B`$ computes $`\operatorname{ECDH}\left(K_A^{public},K_B^{private}\right)`$. -Where this document uses $`HKDF\left(salt,\,IKM,\,info,\,L\right)`$ it +Where this document uses $`\operatorname{HKDF}\left(salt,IKM,info,L\right)`$ it refers to the [HMAC-based key derivation function][] with a salt value of $`salt`$, input key material of $`IKM`$, context string $`info`$, and output keying material length of $`L`$ bytes. @@ -35,10 +35,12 @@ HMAC-based Key Derivation Function using [SHA-256][] as the hash function ```math \begin{aligned} - S&=ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\; - \parallel\;ECDH\left(E_A,\,E_B\right)\\ + S&=\operatorname{ECDH}\left(I_A,E_B\right)\;\parallel\; + \operatorname{ECDH}\left(E_A,I_B\right)\;\parallel\; + \operatorname{ECDH}\left(E_A,E_B\right)\\ + R_0\;\parallel\;C_{0,0}&= - HKDF\left(0,\,S,\,\text{"OLM\_ROOT"},\,64\right) + \operatorname{HKDF}\left(0,S,\text{``OLM\_ROOT"},64\right) \end{aligned} ``` @@ -55,12 +57,13 @@ info. ```math \begin{aligned} - R_i\;\parallel\;C_{i,0}&=HKDF\left( - R_{i-1},\, - ECDH\left(T_{i-1},\,T_i\right),\, - \text{"OLM\_RATCHET"},\, - 64 - \right) + R_i\;\parallel\;C_{i,0}&= + \operatorname{HKDF}\left( + R_{i-1}, + \operatorname{ECDH}\left(T_{i-1},T_i\right), + \text{``OLM\_RATCHET"}, + 64 + \right) \end{aligned} ``` @@ -72,7 +75,7 @@ previous chain key as the key. ```math \begin{aligned} - C_{i,j}&=HMAC\left(C_{i,j-1},\,\text{"\x02"}\right) + C_{i,j}&=\operatorname{HMAC}\left(C_{i,j-1},\text{``\char`\\x02"}\right) \end{aligned} ``` @@ -86,7 +89,7 @@ by Bob to encrypt messages. ```math \begin{aligned} - M_{i,j}&=HMAC\left(C_{i,j},\,\text{"\x01"}\right) + M_{i,j}&=\operatorname{HMAC}\left(C_{i,j},\text{``\char`\\x01"}\right) \end{aligned} ``` @@ -263,7 +266,7 @@ message key using [HKDF-SHA-256][] using the default salt and an info of ```math \begin{aligned} AES\_KEY_{i,j}\;\parallel\;HMAC\_KEY_{i,j}\;\parallel\;AES\_IV_{i,j} - &= HKDF\left(0,\,M_{i,j},\text{"OLM\_KEYS"},\,80\right) \\ + &= \operatorname{HKDF}\left(0,M_{i,j},\text{``OLM\_KEYS"},80\right) \end{aligned} ``` diff --git a/docs/signing.md b/docs/signing.md index fcc5342..58a2b5e 100644 --- a/docs/signing.md +++ b/docs/signing.md @@ -49,13 +49,14 @@ compromised keys, and sends a pre-key message using a shared secret $`S`$, where: ```math -S = ECDH\left(I_A,\,E_E\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\; - \parallel\;ECDH\left(E_A,\,E_E\right) +S = ECDH\left(I_A,E_E\right)\;\parallel\; + ECDH\left(E_A,I_B\right)\;\parallel\; + ECDH\left(E_A,E_E\right) ``` Eve cannot decrypt the message because she does not have the private parts of either $`E_A`$ nor $`I_B`$, so cannot calculate -$`ECDH\left(E_A,\,I_B\right)`$. However, suppose she later compromises +$`ECDH\left(E_A,I_B\right)`$. However, suppose she later compromises Bob's identity key $`I_B`$. This would give her the ability to decrypt any pre-key messages sent to Bob using the compromised one-time keys, and is thus a problematic loss of forward secrecy. If Bob signs his keys with his Ed25519 @@ -66,8 +67,9 @@ On the other hand, signing the one-time keys leads to a reduction in deniability. Recall that the shared secret is calculated as follows: ```math -S = ECDH\left(I_A,\,E_B\right)\;\parallel\;ECDH\left(E_A,\,I_B\right)\; - \parallel\;ECDH\left(E_A,\,E_B\right) +S = ECDH\left(I_A,E_B\right)\;\parallel\; + ECDH\left(E_A,I_B\right)\;\parallel\; + ECDH\left(E_A,E_B\right) ``` If keys are unsigned, a forger can make up values of $`E_A`$ and |