aboutsummaryrefslogtreecommitdiff
path: root/shared/Matrices.cpp
diff options
context:
space:
mode:
authorDEC05EBA <dec05eba@protonmail.com>2019-12-16 02:36:34 +0100
committerDEC05EBA <dec05eba@protonmail.com>2019-12-16 02:36:34 +0100
commit91868237b9789d6a23f1cb9bec89f9c3e9838776 (patch)
tree6c72cd5c8c8dbfd453775068c15e65847473fde0 /shared/Matrices.cpp
parente7bbfac8cfc7c60f3222e0d903726acc28f38326 (diff)
Replace homemade matrix/vector classes with glm
Diffstat (limited to 'shared/Matrices.cpp')
-rw-r--r--shared/Matrices.cpp581
1 files changed, 0 insertions, 581 deletions
diff --git a/shared/Matrices.cpp b/shared/Matrices.cpp
deleted file mode 100644
index 582b285..0000000
--- a/shared/Matrices.cpp
+++ /dev/null
@@ -1,581 +0,0 @@
-///////////////////////////////////////////////////////////////////////////////
-// Matrice.cpp
-// ===========
-// NxN Matrix Math classes
-//
-// The elements of the matrix are stored as column major order.
-// | 0 2 | | 0 3 6 | | 0 4 8 12 |
-// | 1 3 | | 1 4 7 | | 1 5 9 13 |
-// | 2 5 8 | | 2 6 10 14 |
-// | 3 7 11 15 |
-//
-// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
-// CREATED: 2005-06-24
-// UPDATED: 2014-09-21
-//
-// Copyright (C) 2005 Song Ho Ahn
-///////////////////////////////////////////////////////////////////////////////
-
-#include <cmath>
-#include <algorithm>
-#include "Matrices.h"
-
-const float DEG2RAD = 3.141593f / 180;
-const float EPSILON = 0.00001f;
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// transpose 2x2 matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix2& Matrix2::transpose()
-{
- std::swap(m[1], m[2]);
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// return the determinant of 2x2 matrix
-///////////////////////////////////////////////////////////////////////////////
-float Matrix2::getDeterminant()
-{
- return m[0] * m[3] - m[1] * m[2];
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// inverse of 2x2 matrix
-// If cannot find inverse, set identity matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix2& Matrix2::invert()
-{
- float determinant = getDeterminant();
- if(fabs(determinant) <= EPSILON)
- {
- return identity();
- }
-
- float tmp = m[0]; // copy the first element
- float invDeterminant = 1.0f / determinant;
- m[0] = invDeterminant * m[3];
- m[1] = -invDeterminant * m[1];
- m[2] = -invDeterminant * m[2];
- m[3] = invDeterminant * tmp;
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// transpose 3x3 matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix3& Matrix3::transpose()
-{
- std::swap(m[1], m[3]);
- std::swap(m[2], m[6]);
- std::swap(m[5], m[7]);
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// return determinant of 3x3 matrix
-///////////////////////////////////////////////////////////////////////////////
-float Matrix3::getDeterminant()
-{
- return m[0] * (m[4] * m[8] - m[5] * m[7]) -
- m[1] * (m[3] * m[8] - m[5] * m[6]) +
- m[2] * (m[3] * m[7] - m[4] * m[6]);
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// inverse 3x3 matrix
-// If cannot find inverse, set identity matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix3& Matrix3::invert()
-{
- float determinant, invDeterminant;
- float tmp[9];
-
- tmp[0] = m[4] * m[8] - m[5] * m[7];
- tmp[1] = m[2] * m[7] - m[1] * m[8];
- tmp[2] = m[1] * m[5] - m[2] * m[4];
- tmp[3] = m[5] * m[6] - m[3] * m[8];
- tmp[4] = m[0] * m[8] - m[2] * m[6];
- tmp[5] = m[2] * m[3] - m[0] * m[5];
- tmp[6] = m[3] * m[7] - m[4] * m[6];
- tmp[7] = m[1] * m[6] - m[0] * m[7];
- tmp[8] = m[0] * m[4] - m[1] * m[3];
-
- // check determinant if it is 0
- determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6];
- if(fabs(determinant) <= EPSILON)
- {
- return identity(); // cannot inverse, make it idenety matrix
- }
-
- // divide by the determinant
- invDeterminant = 1.0f / determinant;
- m[0] = invDeterminant * tmp[0];
- m[1] = invDeterminant * tmp[1];
- m[2] = invDeterminant * tmp[2];
- m[3] = invDeterminant * tmp[3];
- m[4] = invDeterminant * tmp[4];
- m[5] = invDeterminant * tmp[5];
- m[6] = invDeterminant * tmp[6];
- m[7] = invDeterminant * tmp[7];
- m[8] = invDeterminant * tmp[8];
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// transpose 4x4 matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::transpose()
-{
- std::swap(m[1], m[4]);
- std::swap(m[2], m[8]);
- std::swap(m[3], m[12]);
- std::swap(m[6], m[9]);
- std::swap(m[7], m[13]);
- std::swap(m[11], m[14]);
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// inverse 4x4 matrix
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::invert()
-{
- // If the 4th row is [0,0,0,1] then it is affine matrix and
- // it has no projective transformation.
- if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1)
- this->invertAffine();
- else
- {
- this->invertGeneral();
- /*@@ invertProjective() is not optimized (slower than generic one)
- if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON)
- this->invertProjective(); // inverse using matrix partition
- else
- this->invertGeneral(); // generalized inverse
- */
- }
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// compute the inverse of 4x4 Euclidean transformation matrix
-//
-// Euclidean transformation is translation, rotation, and reflection.
-// With Euclidean transform, only the position and orientation of the object
-// will be changed. Euclidean transform does not change the shape of an object
-// (no scaling). Length and angle are reserved.
-//
-// Use inverseAffine() if the matrix has scale and shear transformation.
-//
-// M = [ R | T ]
-// [ --+-- ] (R denotes 3x3 rotation/reflection matrix)
-// [ 0 | 1 ] (T denotes 1x3 translation matrix)
-//
-// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T
-// (R is orthogonal, R^-1 = R^T)
-//
-// [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix)
-// [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation)
-// [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose)
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::invertEuclidean()
-{
- // transpose 3x3 rotation matrix part
- // | R^T | 0 |
- // | ----+-- |
- // | 0 | 1 |
- float tmp;
- tmp = m[1]; m[1] = m[4]; m[4] = tmp;
- tmp = m[2]; m[2] = m[8]; m[8] = tmp;
- tmp = m[6]; m[6] = m[9]; m[9] = tmp;
-
- // compute translation part -R^T * T
- // | 0 | -R^T x |
- // | --+------- |
- // | 0 | 0 |
- float x = m[12];
- float y = m[13];
- float z = m[14];
- m[12] = -(m[0] * x + m[4] * y + m[8] * z);
- m[13] = -(m[1] * x + m[5] * y + m[9] * z);
- m[14] = -(m[2] * x + m[6] * y + m[10]* z);
-
- // last row should be unchanged (0,0,0,1)
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// compute the inverse of a 4x4 affine transformation matrix
-//
-// Affine transformations are generalizations of Euclidean transformations.
-// Affine transformation includes translation, rotation, reflection, scaling,
-// and shearing. Length and angle are NOT preserved.
-// M = [ R | T ]
-// [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix)
-// [ 0 | 1 ] (T denotes 1x3 translation matrix)
-//
-// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T
-//
-// [ R | T ]-1 [ R^-1 | -R^-1 * T ]
-// [ --+-- ] = [ -----+---------- ]
-// [ 0 | 1 ] [ 0 + 1 ]
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::invertAffine()
-{
- // R^-1
- Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]);
- r.invert();
- m[0] = r[0]; m[1] = r[1]; m[2] = r[2];
- m[4] = r[3]; m[5] = r[4]; m[6] = r[5];
- m[8] = r[6]; m[9] = r[7]; m[10]= r[8];
-
- // -R^-1 * T
- float x = m[12];
- float y = m[13];
- float z = m[14];
- m[12] = -(r[0] * x + r[3] * y + r[6] * z);
- m[13] = -(r[1] * x + r[4] * y + r[7] * z);
- m[14] = -(r[2] * x + r[5] * y + r[8] * z);
-
- // last row should be unchanged (0,0,0,1)
- //m[3] = m[7] = m[11] = 0.0f;
- //m[15] = 1.0f;
-
- return * this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// inverse matrix using matrix partitioning (blockwise inverse)
-// It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where
-// det(A) != 0. If not, use the generic inverse method
-// inverse formula.
-// M = [ A | B ] A, B, C, D are 2x2 matrix blocks
-// [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)|
-// [ C | D ]
-//
-// M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C'
-// [ ---+--- ] B' = (A^-1 * B) * -D'
-// [ C' | D' ] C' = -D' * (C * A^-1)
-// D' = (D - ((C * A^-1) * B))^-1
-//
-// NOTE: I wrap with () if it it used more than once.
-// The matrix is invertable even if det(A)=0, so must check det(A) before
-// calling this function, and use invertGeneric() instead.
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::invertProjective()
-{
- // partition
- Matrix2 a(m[0], m[1], m[4], m[5]);
- Matrix2 b(m[8], m[9], m[12], m[13]);
- Matrix2 c(m[2], m[3], m[6], m[7]);
- Matrix2 d(m[10], m[11], m[14], m[15]);
-
- // pre-compute repeated parts
- a.invert(); // A^-1
- Matrix2 ab = a * b; // A^-1 * B
- Matrix2 ca = c * a; // C * A^-1
- Matrix2 cab = ca * b; // C * A^-1 * B
- Matrix2 dcab = d - cab; // D - C * A^-1 * B
-
- // check determinant if |D - C * A^-1 * B| = 0
- //NOTE: this function assumes det(A) is already checked. if |A|=0 then,
- // cannot use this function.
- float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2];
- if(fabs(determinant) <= EPSILON)
- {
- return identity();
- }
-
- // compute D' and -D'
- Matrix2 d1 = dcab; // (D - C * A^-1 * B)
- d1.invert(); // (D - C * A^-1 * B)^-1
- Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1
-
- // compute C'
- Matrix2 c1 = d2 * ca; // -D' * (C * A^-1)
-
- // compute B'
- Matrix2 b1 = ab * d2; // (A^-1 * B) * -D'
-
- // compute A'
- Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C'
-
- // assemble inverse matrix
- m[0] = a1[0]; m[4] = a1[2]; /*|*/ m[8] = b1[0]; m[12]= b1[2];
- m[1] = a1[1]; m[5] = a1[3]; /*|*/ m[9] = b1[1]; m[13]= b1[3];
- /*-----------------------------+-----------------------------*/
- m[2] = c1[0]; m[6] = c1[2]; /*|*/ m[10]= d1[0]; m[14]= d1[2];
- m[3] = c1[1]; m[7] = c1[3]; /*|*/ m[11]= d1[1]; m[15]= d1[3];
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// compute the inverse of a general 4x4 matrix using Cramer's Rule
-// If cannot find inverse, return indentity matrix
-// M^-1 = adj(M) / det(M)
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::invertGeneral()
-{
- // get cofactors of minor matrices
- float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]);
- float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]);
- float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]);
- float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);
-
- // get determinant
- float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3;
- if(fabs(determinant) <= EPSILON)
- {
- return identity();
- }
-
- // get rest of cofactors for adj(M)
- float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]);
- float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]);
- float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]);
- float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]);
-
- float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[13],m[14],m[15]);
- float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[12],m[14],m[15]);
- float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[12],m[13],m[15]);
- float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[12],m[13],m[14]);
-
- float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[9], m[10],m[11]);
- float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[8], m[10],m[11]);
- float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[8], m[9], m[11]);
- float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[8], m[9], m[10]);
-
- // build inverse matrix = adj(M) / det(M)
- // adjugate of M is the transpose of the cofactor matrix of M
- float invDeterminant = 1.0f / determinant;
- m[0] = invDeterminant * cofactor0;
- m[1] = -invDeterminant * cofactor4;
- m[2] = invDeterminant * cofactor8;
- m[3] = -invDeterminant * cofactor12;
-
- m[4] = -invDeterminant * cofactor1;
- m[5] = invDeterminant * cofactor5;
- m[6] = -invDeterminant * cofactor9;
- m[7] = invDeterminant * cofactor13;
-
- m[8] = invDeterminant * cofactor2;
- m[9] = -invDeterminant * cofactor6;
- m[10]= invDeterminant * cofactor10;
- m[11]= -invDeterminant * cofactor14;
-
- m[12]= -invDeterminant * cofactor3;
- m[13]= invDeterminant * cofactor7;
- m[14]= -invDeterminant * cofactor11;
- m[15]= invDeterminant * cofactor15;
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// return determinant of 4x4 matrix
-///////////////////////////////////////////////////////////////////////////////
-float Matrix4::getDeterminant()
-{
- return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) -
- m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) +
- m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) -
- m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// compute cofactor of 3x3 minor matrix without sign
-// input params are 9 elements of the minor matrix
-// NOTE: The caller must know its sign.
-///////////////////////////////////////////////////////////////////////////////
-float Matrix4::getCofactor(float m0, float m1, float m2,
- float m3, float m4, float m5,
- float m6, float m7, float m8)
-{
- return m0 * (m4 * m8 - m5 * m7) -
- m1 * (m3 * m8 - m5 * m6) +
- m2 * (m3 * m7 - m4 * m6);
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// translate this matrix by (x, y, z)
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::translate(const Vector3& v)
-{
- return translate(v.x, v.y, v.z);
-}
-
-Matrix4& Matrix4::translate(float x, float y, float z)
-{
- m[0] += m[3] * x; m[4] += m[7] * x; m[8] += m[11]* x; m[12]+= m[15]* x;
- m[1] += m[3] * y; m[5] += m[7] * y; m[9] += m[11]* y; m[13]+= m[15]* y;
- m[2] += m[3] * z; m[6] += m[7] * z; m[10]+= m[11]* z; m[14]+= m[15]* z;
-
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// uniform scale
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::scale(float s)
-{
- return scale(s, s, s);
-}
-
-Matrix4& Matrix4::scale(float x, float y, float z)
-{
- m[0] *= x; m[4] *= x; m[8] *= x; m[12] *= x;
- m[1] *= y; m[5] *= y; m[9] *= y; m[13] *= y;
- m[2] *= z; m[6] *= z; m[10]*= z; m[14] *= z;
- return *this;
-}
-
-
-
-///////////////////////////////////////////////////////////////////////////////
-// build a rotation matrix with given angle(degree) and rotation axis, then
-// multiply it with this object
-///////////////////////////////////////////////////////////////////////////////
-Matrix4& Matrix4::rotate(float angle, const Vector3& axis)
-{
- return rotate(angle, axis.x, axis.y, axis.z);
-}
-
-Matrix4& Matrix4::rotate(float angle, float x, float y, float z)
-{
- float c = cosf(angle * DEG2RAD); // cosine
- float s = sinf(angle * DEG2RAD); // sine
- float c1 = 1.0f - c; // 1 - c
- float m0 = m[0], m4 = m[4], m8 = m[8], m12= m[12],
- m1 = m[1], m5 = m[5], m9 = m[9], m13= m[13],
- m2 = m[2], m6 = m[6], m10= m[10], m14= m[14];
-
- // build rotation matrix
- float r0 = x * x * c1 + c;
- float r1 = x * y * c1 + z * s;
- float r2 = x * z * c1 - y * s;
- float r4 = x * y * c1 - z * s;
- float r5 = y * y * c1 + c;
- float r6 = y * z * c1 + x * s;
- float r8 = x * z * c1 + y * s;
- float r9 = y * z * c1 - x * s;
- float r10= z * z * c1 + c;
-
- // multiply rotation matrix
- m[0] = r0 * m0 + r4 * m1 + r8 * m2;
- m[1] = r1 * m0 + r5 * m1 + r9 * m2;
- m[2] = r2 * m0 + r6 * m1 + r10* m2;
- m[4] = r0 * m4 + r4 * m5 + r8 * m6;
- m[5] = r1 * m4 + r5 * m5 + r9 * m6;
- m[6] = r2 * m4 + r6 * m5 + r10* m6;
- m[8] = r0 * m8 + r4 * m9 + r8 * m10;
- m[9] = r1 * m8 + r5 * m9 + r9 * m10;
- m[10]= r2 * m8 + r6 * m9 + r10* m10;
- m[12]= r0 * m12+ r4 * m13+ r8 * m14;
- m[13]= r1 * m12+ r5 * m13+ r9 * m14;
- m[14]= r2 * m12+ r6 * m13+ r10* m14;
-
- return *this;
-}
-
-Matrix4& Matrix4::rotateX(float angle)
-{
- float c = cosf(angle * DEG2RAD);
- float s = sinf(angle * DEG2RAD);
- float m1 = m[1], m2 = m[2],
- m5 = m[5], m6 = m[6],
- m9 = m[9], m10= m[10],
- m13= m[13], m14= m[14];
-
- m[1] = m1 * c + m2 *-s;
- m[2] = m1 * s + m2 * c;
- m[5] = m5 * c + m6 *-s;
- m[6] = m5 * s + m6 * c;
- m[9] = m9 * c + m10*-s;
- m[10]= m9 * s + m10* c;
- m[13]= m13* c + m14*-s;
- m[14]= m13* s + m14* c;
-
- return *this;
-}
-
-Matrix4& Matrix4::rotateY(float angle)
-{
- float c = cosf(angle * DEG2RAD);
- float s = sinf(angle * DEG2RAD);
- float m0 = m[0], m2 = m[2],
- m4 = m[4], m6 = m[6],
- m8 = m[8], m10= m[10],
- m12= m[12], m14= m[14];
-
- m[0] = m0 * c + m2 * s;
- m[2] = m0 *-s + m2 * c;
- m[4] = m4 * c + m6 * s;
- m[6] = m4 *-s + m6 * c;
- m[8] = m8 * c + m10* s;
- m[10]= m8 *-s + m10* c;
- m[12]= m12* c + m14* s;
- m[14]= m12*-s + m14* c;
-
- return *this;
-}
-
-Matrix4& Matrix4::rotateZ(float angle)
-{
- float c = cosf(angle * DEG2RAD);
- float s = sinf(angle * DEG2RAD);
- float m0 = m[0], m1 = m[1],
- m4 = m[4], m5 = m[5],
- m8 = m[8], m9 = m[9],
- m12= m[12], m13= m[13];
-
- m[0] = m0 * c + m1 *-s;
- m[1] = m0 * s + m1 * c;
- m[4] = m4 * c + m5 *-s;
- m[5] = m4 * s + m5 * c;
- m[8] = m8 * c + m9 *-s;
- m[9] = m8 * s + m9 * c;
- m[12]= m12* c + m13*-s;
- m[13]= m12* s + m13* c;
-
- return *this;
-}