1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/**
* Copyright (C) 2015 Topology LP
* Copyright (C) 2018 Jakob Petsovits
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef CPPCODEC_DETAIL_STREAM_CODEC
#define CPPCODEC_DETAIL_STREAM_CODEC
#include <limits>
#include <stdlib.h> // for abort()
#include <stdint.h>
#include "../parse_error.hpp"
#include "config.hpp"
namespace cppcodec {
namespace detail {
using alphabet_index_t = uint_fast16_t;
template <typename Codec, typename CodecVariant>
class stream_codec
{
public:
template <typename Result, typename ResultState> static void encode(
Result& encoded_result, ResultState&, const uint8_t* binary, size_t binary_size);
template <typename Result, typename ResultState> static void decode(
Result& binary_result, ResultState&, const char* encoded, size_t encoded_size);
static constexpr size_t encoded_size(size_t binary_size) noexcept;
static constexpr size_t decoded_max_size(size_t encoded_size) noexcept;
};
template <bool GeneratesPadding> // default for CodecVariant::generates_padding() == false
struct padder {
template <typename CodecVariant, typename Result, typename ResultState, typename EncodedBlockSizeT>
CPPCODEC_ALWAYS_INLINE void operator()(Result&, ResultState&, EncodedBlockSizeT) { }
};
template<> // specialization for CodecVariant::generates_padding() == true
struct padder<true> {
template <typename CodecVariant, typename Result, typename ResultState, typename EncodedBlockSizeT>
CPPCODEC_ALWAYS_INLINE void operator()(
Result& encoded, ResultState& state, EncodedBlockSizeT num_padding_characters)
{
for (EncodedBlockSizeT i = 0; i < num_padding_characters; ++i) {
data::put(encoded, state, CodecVariant::padding_symbol());
}
}
};
template <size_t I>
struct enc {
// Block encoding: Go from 0 to (block size - 1), append a symbol for each iteration unconditionally.
template <typename Codec, typename CodecVariant, typename Result, typename ResultState>
static CPPCODEC_ALWAYS_INLINE void block(Result& encoded, ResultState& state, const uint8_t* src)
{
using EncodedBlockSizeT = decltype(Codec::encoded_block_size());
constexpr static const EncodedBlockSizeT SymbolIndex = static_cast<EncodedBlockSizeT>(I - 1);
enc<I - 1>().template block<Codec, CodecVariant>(encoded, state, src);
data::put(encoded, state, CodecVariant::symbol(Codec::template index<SymbolIndex>(src)));
}
// Tail encoding: Go from 0 until (runtime) num_symbols, append a symbol for each iteration.
template <typename Codec, typename CodecVariant, typename Result, typename ResultState,
typename EncodedBlockSizeT = decltype(Codec::encoded_block_size())>
static CPPCODEC_ALWAYS_INLINE void tail(
Result& encoded, ResultState& state, const uint8_t* src, EncodedBlockSizeT num_symbols)
{
constexpr static const EncodedBlockSizeT SymbolIndex = Codec::encoded_block_size() - I;
constexpr static const EncodedBlockSizeT NumSymbols = SymbolIndex + static_cast<EncodedBlockSizeT>(1);
if (num_symbols == NumSymbols) {
data::put(encoded, state, CodecVariant::symbol(Codec::template index_last<SymbolIndex>(src)));
padder<CodecVariant::generates_padding()> pad;
#ifdef _MSC_VER
pad.operator()<CodecVariant>(encoded, state, Codec::encoded_block_size() - NumSymbols);
#else
pad.template operator()<CodecVariant>(encoded, state, Codec::encoded_block_size() - NumSymbols);
#endif
return;
}
data::put(encoded, state, CodecVariant::symbol(Codec::template index<SymbolIndex>(src)));
enc<I - 1>().template tail<Codec, CodecVariant>(encoded, state, src, num_symbols);
}
};
template<> // terminating specialization
struct enc<0> {
template <typename Codec, typename CodecVariant, typename Result, typename ResultState>
static CPPCODEC_ALWAYS_INLINE void block(Result&, ResultState&, const uint8_t*) { }
template <typename Codec, typename CodecVariant, typename Result, typename ResultState,
typename EncodedBlockSizeT = decltype(Codec::encoded_block_size())>
static CPPCODEC_ALWAYS_INLINE void tail(Result&, ResultState&, const uint8_t*, EncodedBlockSizeT)
{
abort(); // Not reached: block() should be called if num_symbols == block size, not tail().
}
};
template <typename Codec, typename CodecVariant>
template <typename Result, typename ResultState>
inline void stream_codec<Codec, CodecVariant>::encode(
Result& encoded_result, ResultState& state,
const uint8_t* src, size_t src_size)
{
using encoder = enc<Codec::encoded_block_size()>;
const uint8_t* src_end = src + src_size;
if (src_size >= Codec::binary_block_size()) {
src_end -= Codec::binary_block_size();
for (; src <= src_end; src += Codec::binary_block_size()) {
encoder::template block<Codec, CodecVariant>(encoded_result, state, src);
}
src_end += Codec::binary_block_size();
}
if (src_end > src) {
auto remaining_src_len = src_end - src;
if (!remaining_src_len || remaining_src_len >= Codec::binary_block_size()) {
abort();
return;
}
auto num_symbols = Codec::num_encoded_tail_symbols(static_cast<uint8_t>(remaining_src_len));
encoder::template tail<Codec, CodecVariant>(encoded_result, state, src, num_symbols);
}
}
// Range & lookup table generation, see
// http://stackoverflow.com/questions/13313980/populate-an-array-using-constexpr-at-compile-time
// and http://cplusadd.blogspot.ca/2013/02/c11-compile-time-lookup-tablearray-with.html
template<unsigned... Is> struct seq {};
template<unsigned N, unsigned... Is>
struct gen_seq : gen_seq<N - 4, N - 4, N - 3, N - 2, N - 1, Is...> {
// Clang up to 3.6 has a limit of 256 for template recursion,
// so pass a few more symbols at once to make it work.
static_assert(N % 4 == 0, "I must be divisible by 4 to eventually end at 0");
};
template<unsigned... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template <size_t N>
struct lookup_table_t {
alphabet_index_t lookup[N];
static constexpr size_t size = N;
};
template<typename LambdaType, unsigned... Is>
constexpr lookup_table_t<sizeof...(Is)> make_lookup_table(seq<Is...>, LambdaType value_for_index) {
return { { value_for_index(Is)... } };
}
template<unsigned N, typename LambdaType>
constexpr lookup_table_t<N> make_lookup_table(LambdaType evalFunc) {
return make_lookup_table(gen_seq<N>(), evalFunc);
}
// CodecVariant::symbol() provides a symbol for an index.
// Use recursive templates to get the inverse lookup table for fast decoding.
template <typename T>
static CPPCODEC_ALWAYS_INLINE constexpr size_t num_possible_values()
{
return static_cast<size_t>(
static_cast<intmax_t>(std::numeric_limits<T>::max())
- static_cast<intmax_t>(std::numeric_limits<T>::min()) + 1);
}
template <typename CodecVariant, alphabet_index_t InvalidIdx, size_t I>
struct index_if_in_alphabet {
static CPPCODEC_ALWAYS_INLINE constexpr alphabet_index_t for_symbol(char symbol)
{
return (CodecVariant::symbol(
static_cast<alphabet_index_t>(CodecVariant::alphabet_size() - I)) == symbol)
? static_cast<alphabet_index_t>(CodecVariant::alphabet_size() - I)
: index_if_in_alphabet<CodecVariant, InvalidIdx, I - 1>::for_symbol(symbol);
}
};
template <typename CodecVariant, alphabet_index_t InvalidIdx>
struct index_if_in_alphabet<CodecVariant, InvalidIdx, 0> { // terminating specialization
static CPPCODEC_ALWAYS_INLINE constexpr alphabet_index_t for_symbol(char)
{
return InvalidIdx;
}
};
template <typename CodecVariant, size_t I>
struct padding_searcher {
static CPPCODEC_ALWAYS_INLINE constexpr bool exists_padding_symbol()
{
// Clang up to 3.6 has a limit of 256 for template recursion,
// so pass a few more symbols at once to make it work.
static_assert(I % 4 == 0, "I must be divisible by 4 to eventually end at 0");
return CodecVariant::is_padding_symbol(
static_cast<char>(num_possible_values<char>() - I - 4))
|| CodecVariant::is_padding_symbol(
static_cast<char>(num_possible_values<char>() - I - 3))
|| CodecVariant::is_padding_symbol(
static_cast<char>(num_possible_values<char>() - I - 2))
|| CodecVariant::is_padding_symbol(
static_cast<char>(num_possible_values<char>() - I - 1))
|| padding_searcher<CodecVariant, I - 4>::exists_padding_symbol();
}
};
template <typename CodecVariant>
struct padding_searcher<CodecVariant, 0> { // terminating specialization
static CPPCODEC_ALWAYS_INLINE constexpr bool exists_padding_symbol() { return false; }
};
template <typename CodecVariant>
struct alphabet_index_info
{
static constexpr const size_t num_possible_symbols = num_possible_values<char>();
static constexpr const alphabet_index_t padding_idx = 1 << 8;
static constexpr const alphabet_index_t invalid_idx = 1 << 9;
static constexpr const alphabet_index_t eof_idx = 1 << 10;
static constexpr const alphabet_index_t stop_character_mask = static_cast<alphabet_index_t>(~0xFFu);
static constexpr const bool padding_allowed = padding_searcher<
CodecVariant, num_possible_symbols>::exists_padding_symbol();
static CPPCODEC_ALWAYS_INLINE constexpr bool allows_padding()
{
return padding_allowed;
}
static CPPCODEC_ALWAYS_INLINE constexpr bool is_padding(alphabet_index_t idx)
{
return allows_padding() ? (idx == padding_idx) : false;
}
static CPPCODEC_ALWAYS_INLINE constexpr bool is_invalid(alphabet_index_t idx) { return idx == invalid_idx; }
static CPPCODEC_ALWAYS_INLINE constexpr bool is_eof(alphabet_index_t idx) { return idx == eof_idx; }
static CPPCODEC_ALWAYS_INLINE constexpr bool is_stop_character(alphabet_index_t idx)
{
return (idx & stop_character_mask) != 0;
}
private:
static CPPCODEC_ALWAYS_INLINE constexpr
alphabet_index_t valid_index_or(alphabet_index_t a, alphabet_index_t b)
{
return a == invalid_idx ? b : a;
}
using idx_if_in_alphabet = index_if_in_alphabet<
CodecVariant, invalid_idx, CodecVariant::alphabet_size()>;
static CPPCODEC_ALWAYS_INLINE constexpr alphabet_index_t index_of(char symbol)
{
return valid_index_or(idx_if_in_alphabet::for_symbol(symbol),
CodecVariant::is_eof_symbol(symbol) ? eof_idx
: CodecVariant::is_padding_symbol(symbol) ? padding_idx
: invalid_idx);
}
// GCC <= 4.9 has a bug with retaining constexpr when passing a function pointer.
// To get around this, we'll create a callable with operator() and pass that one.
// Unfortunately, MSVC prior to VS 2017 (for MinSizeRel or Release builds)
// chokes on this by compiling the project in 20 minutes instead of seconds.
// So let's define two separate variants and remove the old GCC one whenever we
// decide not to support GCC < 5.0 anymore.
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
struct index_at {
CPPCODEC_ALWAYS_INLINE constexpr alphabet_index_t operator()(size_t symbol) const {
return index_of(CodecVariant::normalized_symbol(static_cast<char>(symbol)));
}
};
#else
static CPPCODEC_ALWAYS_INLINE constexpr alphabet_index_t index_at(size_t symbol)
{
return index_of(CodecVariant::normalized_symbol(static_cast<char>(symbol)));
}
#endif
public:
struct lookup {
static CPPCODEC_ALWAYS_INLINE alphabet_index_t for_symbol(char symbol)
{
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
static constexpr const auto t = make_lookup_table<num_possible_symbols>(index_at());
#else
static constexpr const auto t = make_lookup_table<num_possible_symbols>(&index_at);
#endif
static_assert(t.size == num_possible_symbols,
"lookup table must cover each possible (character) symbol");
return t.lookup[static_cast<uint8_t>(symbol)];
}
};
};
//
// At long last! The actual decode/encode functions.
template <typename Codec, typename CodecVariant>
template <typename Result, typename ResultState>
inline void stream_codec<Codec, CodecVariant>::decode(
Result& binary_result, ResultState& state,
const char* src_encoded, size_t src_size)
{
using alphabet_index_lookup = typename alphabet_index_info<CodecVariant>::lookup;
const char* src = src_encoded;
const char* src_end = src + src_size;
alphabet_index_t alphabet_indexes[Codec::encoded_block_size()] = {};
alphabet_indexes[0] = alphabet_index_info<CodecVariant>::eof_idx;
alphabet_index_t* const alphabet_index_start = &alphabet_indexes[0];
alphabet_index_t* const alphabet_index_end = &alphabet_indexes[Codec::encoded_block_size()];
alphabet_index_t* alphabet_index_ptr = &alphabet_indexes[0];
while (src < src_end) {
if (CodecVariant::should_ignore(*src)) {
++src;
continue;
}
*alphabet_index_ptr = alphabet_index_lookup::for_symbol(*src);
if (alphabet_index_info<CodecVariant>::is_stop_character(*alphabet_index_ptr)) {
break;
}
++src;
++alphabet_index_ptr;
if (alphabet_index_ptr == alphabet_index_end) {
Codec::decode_block(binary_result, state, alphabet_indexes);
alphabet_index_ptr = alphabet_index_start;
}
}
if (alphabet_index_info<CodecVariant>::is_invalid(*alphabet_index_ptr)) {
throw symbol_error(*src);
}
++src;
alphabet_index_t* last_index_ptr = alphabet_index_ptr;
if (alphabet_index_info<CodecVariant>::is_padding(*last_index_ptr)) {
if (last_index_ptr == alphabet_index_start) {
// Don't accept padding at the start of a block.
// The encoder should have omitted that padding altogether.
throw padding_error();
}
// We're in here because we just read a (first) padding character. Try to read more.
// Count with last_index_ptr, but store in alphabet_index_ptr so we don't
// overflow the array in case the input data is too long.
++last_index_ptr;
while (src < src_end) {
*alphabet_index_ptr = alphabet_index_lookup::for_symbol(*(src++));
if (alphabet_index_info<CodecVariant>::is_eof(*alphabet_index_ptr)) {
*alphabet_index_ptr = alphabet_index_info<CodecVariant>::padding_idx;
break;
}
if (!alphabet_index_info<CodecVariant>::is_padding(*alphabet_index_ptr)) {
throw padding_error();
}
++last_index_ptr;
if (last_index_ptr > alphabet_index_end) {
throw padding_error();
}
}
}
if (last_index_ptr != alphabet_index_start) {
if ((CodecVariant::requires_padding()
|| alphabet_index_info<CodecVariant>::is_padding(*alphabet_index_ptr)
) && last_index_ptr != alphabet_index_end)
{
// If the input is not a multiple of the block size then the input is incorrect.
throw padding_error();
}
if (alphabet_index_ptr >= alphabet_index_end) {
abort();
return;
}
Codec::decode_tail(binary_result, state, alphabet_indexes,
static_cast<size_t>(alphabet_index_ptr - alphabet_index_start));
}
}
template <typename Codec, typename CodecVariant>
inline constexpr size_t stream_codec<Codec, CodecVariant>::encoded_size(size_t binary_size) noexcept
{
using C = Codec;
// constexpr rules make this a lot harder to read than it actually is.
return CodecVariant::generates_padding()
// With padding, the encoded size is a multiple of the encoded block size.
// To calculate that, round the binary size up to multiple of the binary block size,
// then convert to encoded by multiplying with { base32: 8/5, base64: 4/3 }.
? (binary_size + (C::binary_block_size() - 1)
- ((binary_size + (C::binary_block_size() - 1)) % C::binary_block_size()))
* C::encoded_block_size() / C::binary_block_size()
// No padding: only pad to the next multiple of 5 bits, i.e. at most a single extra byte.
: (binary_size * C::encoded_block_size() / C::binary_block_size())
+ (((binary_size * C::encoded_block_size()) % C::binary_block_size()) ? 1 : 0);
}
template <typename Codec, typename CodecVariant>
inline constexpr size_t stream_codec<Codec, CodecVariant>::decoded_max_size(size_t encoded_size) noexcept
{
using C = Codec;
return CodecVariant::requires_padding()
? (encoded_size / C::encoded_block_size() * C::binary_block_size())
: (encoded_size / C::encoded_block_size() * C::binary_block_size())
+ ((encoded_size % C::encoded_block_size())
* C::binary_block_size() / C::encoded_block_size());
}
} // namespace detail
} // namespace cppcodec
#endif // CPPCODEC_DETAIL_STREAM_CODEC
|