aboutsummaryrefslogtreecommitdiff
path: root/src/AsyncImageLoader.cpp
blob: d3aa287af1ad75cbf34d1c13b0c6b0c4b3c35c98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#include "../include/AsyncImageLoader.hpp"
#include "../include/DownloadUtils.hpp"
#include "../include/ImageUtils.hpp"
#include "../include/Scale.hpp"
#include "../include/SfmlFixes.hpp"
#include "../external/hash-library/sha256.h"
#include <assert.h>

namespace QuickMedia {
    // Linear interpolation
    // TODO: Is this implementation ok? it always uses +1 offset for interpolation but if we were to resize an image with near 1x1 scaling
    // then it would be slightly blurry
    static void copy_resize(const sf::Image &source, sf::Image &destination, sf::Vector2u destination_size) {
        const sf::Vector2u source_size = source.getSize();
        if(source_size.x == 0 || source_size.y == 0 || destination_size.x == 0 || destination_size.y == 0)
            return;

        //float width_ratio = (float)source_size.x / (float)destination_size.x;
        //float height_ratio = (float)source_size.y / (float)destination_size.y;

        const sf::Uint8 *source_pixels = source.getPixelsPtr();
        // TODO: Remove this somehow. Right now we need to allocate this and also allocate the same array in the destination image
        sf::Uint32 *destination_pixels = new sf::Uint32[destination_size.x * destination_size.y];
        sf::Uint32 *destination_pixel = destination_pixels;
        for(unsigned int y = 0; y < destination_size.y; ++y) {
            for(unsigned int x = 0; x < destination_size.x; ++x) {
                int scaled_x_start = ((float)x / (float)destination_size.x) * source_size.x;
                int scaled_y_start = ((float)y / (float)destination_size.y) * source_size.y;
                int scaled_x_end = ((float)(x + 1) / (float)destination_size.x) * source_size.x;
                int scaled_y_end = ((float)(y + 1) / (float)destination_size.y) * source_size.y;
                if(scaled_x_end > (int)source_size.x - 1) scaled_x_end = source_size.x - 1;
                if(scaled_y_end > (int)source_size.y - 1) scaled_y_end = source_size.y - 1;
                //float scaled_x = x * width_ratio;
                //float scaled_y = y * height_ratio;

                //sf::Uint32 *source_pixel = (sf::Uint32*)(source_pixels + (int)(scaled_x + scaled_y * source_size.x) * 4);
                sf::Uint32 sum_red = 0;
                sf::Uint32 sum_green = 0;
                sf::Uint32 sum_blue = 0;
                sf::Uint32 sum_alpha = 0;
                sf::Uint32 num_colors = (scaled_x_end - scaled_x_start) * (scaled_y_end - scaled_y_start);
                for(int yy = scaled_y_start; yy < scaled_y_end; ++yy) {
                    for(int xx = scaled_x_start; xx < scaled_x_end; ++xx) {
                        sf::Uint32 *source_pixel = (sf::Uint32*)(source_pixels + (xx + yy * source_size.x) * 4);
                        sum_red += (*source_pixel >> 24);
                        sum_green += ((*source_pixel >> 16) & 0xFF);
                        sum_blue += ((*source_pixel >> 8) & 0xFF);
                        sum_alpha += (*source_pixel & 0xFF);
                    }
                }
                sum_red /= num_colors;
                sum_green /= num_colors;
                sum_blue /= num_colors;
                sum_alpha /= num_colors;
                *destination_pixel = (sum_red << 24) | (sum_green << 16) | (sum_blue << 8) | sum_alpha;
                ++destination_pixel;
            }
        }
        destination.create(destination_size.x, destination_size.y, (sf::Uint8*)destination_pixels);
        delete []destination_pixels;
    }
    
    static bool save_image_as_thumbnail_atomic(const sf::Image &image, const Path &thumbnail_path, const char *ext) {
        Path tmp_path = thumbnail_path;
        tmp_path.append(".tmp");
        const char *thumbnail_path_ext = thumbnail_path.ext();
        if(is_image_ext(ext))
            tmp_path.append(ext);
        else if(is_image_ext(thumbnail_path_ext))
            tmp_path.append(thumbnail_path_ext);
        else
            tmp_path.append(".png");
        return image.saveToFile(tmp_path.data) && (rename(tmp_path.data.c_str(), thumbnail_path.data.c_str()) == 0);
    }

    // Returns empty string if no extension
    static const char* get_ext(const std::string &path) {
        size_t slash_index = path.rfind('/');
        size_t index = path.rfind('.');
        if(index != std::string::npos && (slash_index == std::string::npos || index > slash_index))
            return path.c_str() + index;
        return "";
    }

    static void create_thumbnail_if_thumbnail_smaller_than_image(const std::string &original_url, const Path &thumbnail_path, ThumbnailData *thumbnail_data, sf::Vector2i resize_target_size) {
        sf::Vector2u new_image_size = clamp_to_size(thumbnail_data->image->getSize(), sf::Vector2u(resize_target_size.x, resize_target_size.y));
        if(new_image_size.x < thumbnail_data->image->getSize().x || new_image_size.y < thumbnail_data->image->getSize().y) {
            auto destination_image = std::make_unique<sf::Image>();
            copy_resize(*thumbnail_data->image, *destination_image, new_image_size);
            thumbnail_data->image = std::move(destination_image);
            save_image_as_thumbnail_atomic(*thumbnail_data->image, thumbnail_path, get_ext(original_url));
            thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
        }
    }

    AsyncImageLoader::AsyncImageLoader() {
        for(int i = 0; i < NUM_IMAGE_LOAD_THREADS; ++i) {
            loading_image[i] = false;
        }

        load_image_thread = std::thread([this]{
            std::optional<ThumbnailLoadData> thumbnail_load_data_opt;
            while(true) {
                thumbnail_load_data_opt = image_load_queue.pop_wait();
                if(!thumbnail_load_data_opt)
                    break;

                ThumbnailLoadData &thumbnail_load_data = thumbnail_load_data_opt.value();

                thumbnail_load_data.thumbnail_data->image = std::make_unique<sf::Image>();
                if(load_image_from_file(*thumbnail_load_data.thumbnail_data->image, thumbnail_load_data.thumbnail_path.data)) {
                    fprintf(stderr, "Loaded %s from thumbnail cache\n", thumbnail_load_data.path.data.c_str());
                    thumbnail_load_data.thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                    continue;
                }

                if(thumbnail_load_data.local) {
                    if(load_image_from_file(*thumbnail_load_data.thumbnail_data->image, thumbnail_load_data.path.data)
                        && thumbnail_load_data.resize_target_size.x != 0 && thumbnail_load_data.resize_target_size.y != 0)
                    {
                        create_thumbnail_if_thumbnail_smaller_than_image(thumbnail_load_data.path.data, thumbnail_load_data.thumbnail_path, thumbnail_load_data.thumbnail_data.get(), thumbnail_load_data.resize_target_size);
                    }
                    thumbnail_load_data.thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                } else {
                    thumbnail_load_data.thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                }
            }
        });
    }

    AsyncImageLoader::~AsyncImageLoader() {
        image_load_queue.close();
        if(load_image_thread.joinable())
            load_image_thread.join();

        // TODO: Find a way to kill the threads instead. We need to do this right now because creating a new thread before the last one has died causes a crash
        for(size_t i = 0; i < NUM_IMAGE_LOAD_THREADS; ++i) {
            if(download_image_thread[i].joinable())
                download_image_thread[i].join();
        }
    }

    void AsyncImageLoader::load_thumbnail(const std::string &url, bool local, sf::Vector2i resize_target_size, bool use_tor, std::shared_ptr<ThumbnailData> thumbnail_data) {
        if(thumbnail_data->loading_state != LoadingState::NOT_LOADED)
            return;

        if(url.empty()) {
            thumbnail_data->image = std::make_unique<sf::Image>();
            thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
            return;
        }
        
        SHA256 sha256;
        sha256.add(url.data(), url.size());
        Path thumbnail_path = get_cache_dir().join("thumbnails").join(sha256.getHash());
        if(get_file_type(thumbnail_path) == FileType::REGULAR) {
            thumbnail_data->loading_state = LoadingState::LOADING;
            image_load_queue.push({ url, thumbnail_path, local, thumbnail_data, resize_target_size });
            return;
        } else if(local && get_file_type(url) == FileType::REGULAR) {
            thumbnail_data->loading_state = LoadingState::LOADING;
            image_load_queue.push({ url, thumbnail_path, true, thumbnail_data, resize_target_size });
            return;
        }

        int free_index = get_free_load_index();
        if(free_index == -1)
            return;

        loading_image[free_index] = true;
        thumbnail_data->loading_state = LoadingState::LOADING;
        if(download_image_thread[free_index].joinable())
            download_image_thread[free_index].join();

        // TODO: Keep the thread running and use conditional variable instead to sleep until a new image should be loaded. Same in ImageViewer.
        download_image_thread[free_index] = std::thread([this, free_index, thumbnail_path, url, local, resize_target_size, thumbnail_data, use_tor]() mutable {
            thumbnail_data->image = std::make_unique<sf::Image>();
            if(load_image_from_file(*thumbnail_data->image, thumbnail_path.data)) {
                fprintf(stderr, "Loaded %s from thumbnail cache\n", url.c_str());
                thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                loading_image[free_index] = false;
                return;
            } else {
                if(local) {
                    if(!load_image_from_file(*thumbnail_data->image, url)) {
                        thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                        loading_image[free_index] = false;
                        return;
                    }
                } else {
                    // Use the same path as the thumbnail path, since it wont be overwritten if the image is smaller than the thumbnail target size
                    if(download_to_file(url, thumbnail_path.data, {}, use_tor, true) != DownloadResult::OK || !load_image_from_file(*thumbnail_data->image, thumbnail_path.data)) {
                        thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
                        loading_image[free_index] = false;
                        return;
                    }
                }
            }

            if(resize_target_size.x != 0 && resize_target_size.y != 0)
                create_thumbnail_if_thumbnail_smaller_than_image(url, thumbnail_path, thumbnail_data.get(), resize_target_size);

            thumbnail_data->loading_state = LoadingState::FINISHED_LOADING;
            loading_image[free_index] = false;
            return;
        });
    }

    int AsyncImageLoader::get_free_load_index() const {
        for(int i = 0; i < NUM_IMAGE_LOAD_THREADS; ++i) {
            if(!loading_image[i])
                return i;
        }
        return -1;
    }
}