1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
#include "../include/Program.hpp"
#include <unistd.h>
#include <sys/wait.h>
#include <sys/prctl.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unordered_map>
#include <mutex>
#include <signal.h>
#define READ_END 0
#define WRITE_END 1
struct ThreadProgram {
ReadProgram read_program;
bool killed;
};
static std::unordered_map<std::thread::id, ThreadProgram> thread_current_program;
static std::mutex thread_current_program_mutex;
class CurrentThreadProgram {
public:
CurrentThreadProgram() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
ThreadProgram thread_program;
thread_program.read_program.pid = -1;
thread_program.read_program.read_fd = -1;
thread_program.killed = false;
thread_current_program[std::this_thread::get_id()] = std::move(thread_program);
}
~CurrentThreadProgram() {
thread_current_program.erase(std::this_thread::get_id());
}
void set(ReadProgram read_program) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end())
it->second.read_program = std::move(read_program);
}
void clear() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end()) {
it->second.read_program.pid = -1;
it->second.read_program.read_fd = -1;
}
}
void kill_in_thread(const std::thread::id &thread_id) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(thread_id);
if(it != thread_current_program.end() && it->second.read_program.pid != -1 && it->second.read_program.read_fd != -1) {
close(it->second.read_program.read_fd);
kill(it->second.read_program.pid, SIGTERM);
it->second.killed = true;
}
}
bool is_killed() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end())
return it->second.killed;
return false;
}
};
thread_local CurrentThreadProgram current_thread_program;
int exec_program_pipe(const char **args, ReadProgram *read_program) {
/* 1 arguments */
if(args[0] == NULL)
return -1;
if(current_thread_program.is_killed())
return -1;
int fd[2];
if(pipe(fd) == -1) {
perror("Failed to open pipe");
return -2;
}
pid_t parent_pid = getpid();
pid_t pid = fork();
if(pid == -1) {
perror("Failed to fork");
close(fd[READ_END]);
close(fd[WRITE_END]);
return -3;
} else if(pid == 0) { /* child */
if(prctl(PR_SET_PDEATHSIG, SIGTERM) == -1) {
perror("prctl(PR_SET_PDEATHSIG, SIGTERM) failed");
_exit(127);
}
/* Test if the parent died before the above call to prctl */
if(getppid() != parent_pid)
_exit(127);
dup2(fd[WRITE_END], STDOUT_FILENO);
close(fd[READ_END]);
close(fd[WRITE_END]);
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else { /* parent */
close(fd[WRITE_END]);
read_program->pid = pid;
read_program->read_fd = fd[READ_END];
current_thread_program.set(*read_program);
return 0;
}
}
int exec_program(const char **args, ProgramOutputCallback output_callback, void *userdata, int buffer_size) {
ReadProgram read_program;
int res = exec_program_pipe(args, &read_program);
if(res != 0)
return res;
int result = 0;
int status;
int exit_status;
assert(buffer_size >= 1 && buffer_size <= 65536);
char *buffer = (char*)alloca(buffer_size + 1);
for(;;) {
ssize_t bytes_read = read(read_program.read_fd, buffer, buffer_size);
if(bytes_read == 0) {
break;
} else if(bytes_read == -1) {
int err = errno;
fprintf(stderr, "Failed to read from pipe to program %s, error: %s\n", args[0], strerror(err));
result = -err;
break;
}
buffer[bytes_read] = '\0';
if(output_callback) {
result = output_callback(buffer, bytes_read, userdata);
if(result != 0)
break;
}
}
program_clear_current_thread();
if(result != 0)
kill(read_program.pid, SIGTERM);
if(waitpid(read_program.pid, &status, 0) == -1) {
perror("waitpid failed");
result = -5;
goto cleanup;
}
if(!WIFEXITED(status)) {
result = -4;
goto cleanup;
}
exit_status = WEXITSTATUS(status);
if(exit_status != 0) {
fprintf(stderr, "Failed to execute program (");
const char **arg = args;
while(*arg) {
if(arg != args)
fputc(' ', stderr);
fprintf(stderr, "'%s'", *arg);
++arg;
}
fprintf(stderr, "), exit status %d\n", exit_status);
result = -exit_status;
}
cleanup:
close(read_program.read_fd);
return result;
}
int wait_program(pid_t process_id) {
int status;
if(waitpid(process_id, &status, 0) == -1) {
perror("waitpid failed");
return -errno;
}
if(!WIFEXITED(status))
return -4;
return WEXITSTATUS(status);
}
int wait_program_non_blocking(pid_t process_id, int *status) {
int s;
int wait_result = waitpid(process_id, &s, WNOHANG);
if(wait_result == -1) {
perror("waitpid failed");
*status = -errno;
return 0;
} else if(wait_result == 0) {
/* the child process is still running */
*status = 0;
return 0;
}
if(!WIFEXITED(s)) {
*status = -4;
return 0;
}
*status = WEXITSTATUS(s);
return 1;
}
int exec_program_async(const char **args, pid_t *result_process_id) {
/* 1 arguments */
if(args[0] == NULL)
return -1;
pid_t parent_pid = getpid();
pid_t pid = fork();
if(pid == -1) {
int err = errno;
perror("Failed to fork");
return -err;
} else if(pid == 0) { /* child */
if(result_process_id) {
if(prctl(PR_SET_PDEATHSIG, SIGTERM) == -1) {
perror("prctl(PR_SET_PDEATHSIG, SIGTERM) failed");
_exit(127);
}
/* Test if the parent died before the above call to prctl */
if(getppid() != parent_pid)
_exit(127);
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else {
setsid();
signal(SIGHUP, SIG_IGN);
// Daemonize child to make the parent the init process which will reap the zombie child
pid_t second_child = fork();
if(second_child == 0) { // child
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else if(second_child != -1) {
_exit(0);
}
}
} else { /* parent */
if(result_process_id)
*result_process_id = pid;
else
waitpid(pid, nullptr, 0);
}
return 0;
}
void program_clear_current_thread() {
current_thread_program.clear();
}
void program_kill_in_thread(const std::thread::id &thread_id) {
current_thread_program.kill_in_thread(thread_id);
}
|