1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
#include "../include/Program.hpp"
#include <unistd.h>
#include <sys/wait.h>
#include <errno.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <unordered_map>
#include <mutex>
#include <signal.h>
#define READ_END 0
#define WRITE_END 1
int accumulate_string(char *data, int size, void *userdata) {
std::string *str = (std::string*)userdata;
if(str->size() + size > 1024 * 1024 * 100) // 100mb sane limit, TODO: make configurable
return 1;
str->append(data, size);
return 0;
}
struct ReadWriteProgram {
pid_t pid = -1;
int read_fd = -1;
int write_fd = -1;
};
struct ThreadProgram {
ReadWriteProgram program;
bool killed;
};
static std::unordered_map<std::thread::id, ThreadProgram> thread_current_program;
static std::mutex thread_current_program_mutex;
class CurrentThreadProgram {
public:
CurrentThreadProgram() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
ThreadProgram thread_program;
thread_program.program.pid = -1;
thread_program.program.read_fd = -1;
thread_program.program.write_fd = -1;
thread_program.killed = false;
thread_current_program[std::this_thread::get_id()] = std::move(thread_program);
}
~CurrentThreadProgram() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
thread_current_program.erase(std::this_thread::get_id());
}
// TODO: Make sure the thread specific program has been stopped before this is called. exec_program_pipe needs to be modified for that
void set(ReadProgram read_program) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end()) {
it->second.program.pid = read_program.pid;
it->second.program.read_fd = read_program.read_fd;
it->second.program.write_fd = -1;
}
}
// TODO: Make sure the thread specific program has been stopped before this is called. exec_program_pipe needs to be modified for that
void set(ReadWriteProgram program) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end())
it->second.program = std::move(program);
}
void clear() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end()) {
it->second.program.pid = -1;
it->second.program.read_fd = -1;
it->second.program.write_fd = -1;
}
}
// TODO: This same mutex should be used in the exec_... functions when they do kill() etc to make sure we dont accidentally kill another program here if another process gets the killed process id!
void kill_in_thread(const std::thread::id &thread_id) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(thread_id);
if(it != thread_current_program.end()) {
if(it->second.program.read_fd != -1) {
close(it->second.program.read_fd);
it->second.program.read_fd = -1;
}
if(it->second.program.write_fd != -1) {
close(it->second.program.write_fd);
it->second.program.write_fd = -1;
}
if(it->second.program.pid != -1) {
kill(it->second.program.pid, SIGTERM);
it->second.program.pid = -1;
}
it->second.killed = true;
}
}
bool is_killed() {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(std::this_thread::get_id());
if(it != thread_current_program.end())
return it->second.killed;
return false;
}
};
thread_local CurrentThreadProgram current_thread_program;
int exec_program_pipe(const char **args, ReadProgram *read_program) {
read_program->pid = -1;
read_program->read_fd = -1;
/* 1 arguments */
if(args[0] == NULL)
return -1;
if(current_thread_program.is_killed())
return -1;
int fd[2];
if(pipe(fd) == -1) {
perror("Failed to open pipe");
return -2;
}
pid_t pid = vfork();
if(pid == -1) {
perror("Failed to vfork");
close(fd[READ_END]);
close(fd[WRITE_END]);
return -3;
} else if(pid == 0) { /* child */
dup2(fd[WRITE_END], STDOUT_FILENO);
close(fd[READ_END]);
close(fd[WRITE_END]);
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else { /* parent */
close(fd[WRITE_END]);
read_program->pid = pid;
read_program->read_fd = fd[READ_END];
current_thread_program.set(*read_program);
return 0;
}
}
static int exec_program_pipe2(const char **args, ReadWriteProgram *program) {
program->pid = -1;
program->read_fd = -1;
program->write_fd = -1;
/* 1 arguments */
if(args[0] == NULL)
return -1;
if(current_thread_program.is_killed())
return -1;
int read_fd[2];
if(pipe(read_fd) == -1) {
perror("Failed to open pipe");
return -2;
}
int write_fd[2];
if(pipe(write_fd) == -1) {
close(read_fd[0]);
close(read_fd[1]);
perror("Failed to open pipe");
return -2;
}
pid_t pid = vfork();
if(pid == -1) {
perror("Failed to vfork");
close(read_fd[READ_END]);
close(read_fd[WRITE_END]);
close(write_fd[READ_END]);
close(write_fd[WRITE_END]);
return -3;
} else if(pid == 0) { /* child */
dup2(read_fd[WRITE_END], STDOUT_FILENO);
close(read_fd[READ_END]);
close(read_fd[WRITE_END]);
dup2(write_fd[READ_END], STDIN_FILENO);
close(write_fd[READ_END]);
close(write_fd[WRITE_END]);
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else { /* parent */
close(read_fd[WRITE_END]);
close(write_fd[READ_END]);
program->pid = pid;
program->read_fd = read_fd[READ_END];
program->write_fd = write_fd[WRITE_END];
current_thread_program.set(*program);
return 0;
}
}
int exec_program_write_stdin(const char **args, const char *str, size_t size, ProgramOutputCallback output_callback, void *userdata, int buffer_size) {
ReadWriteProgram program;
int res = exec_program_pipe2(args, &program);
if(res != 0)
return res;
int result = 0;
int status;
int exit_status;
assert(buffer_size >= 1 && buffer_size <= 65536);
char *buffer = (char*)alloca(buffer_size + 1);
const ssize_t write_buffer_size = 8192;
size_t write_offset = 0;
while(write_offset < size) {
ssize_t write_size = (ssize_t)size - (ssize_t)write_offset;
if(write_size > write_buffer_size)
write_size = write_buffer_size;
ssize_t bytes_written = write(program.write_fd, str + write_offset, write_size);
if(bytes_written == -1) {
int err = errno;
fprintf(stderr, "Failed to write to pipe to program %s, error: %s\n", args[0], strerror(err));
result = -err;
break;
}
if(bytes_written < write_size)
write_size = bytes_written;
write_offset += write_size;
}
close(program.write_fd);
if(result == 0) {
for(;;) {
ssize_t bytes_read = read(program.read_fd, buffer, buffer_size);
if(bytes_read == 0) {
break;
} else if(bytes_read == -1) {
int err = errno;
fprintf(stderr, "Failed to read from pipe to program %s, error: %s\n", args[0], strerror(err));
result = -err;
break;
}
buffer[bytes_read] = '\0';
if(output_callback) {
result = output_callback(buffer, bytes_read, userdata);
if(result != 0)
break;
}
}
}
// TODO: Set program.pid to -1 and with currenthreadprogram mutex. Same in other places
if(result != 0)
kill(program.pid, SIGTERM);
if(waitpid(program.pid, &status, 0) == -1) {
perror("waitpid failed");
result = -5;
goto cleanup;
}
if(!WIFEXITED(status)) {
result = -4;
goto cleanup;
}
exit_status = WEXITSTATUS(status);
if(exit_status != 0) {
fprintf(stderr, "Failed to execute program (");
const char **arg = args;
while(*arg) {
if(arg != args)
fputc(' ', stderr);
fprintf(stderr, "'%s'", *arg);
++arg;
}
fprintf(stderr, "), exit status %d\n", exit_status);
result = -exit_status;
}
cleanup:
program_clear_current_thread();
close(program.read_fd);
return result;
}
int exec_program(const char **args, ProgramOutputCallback output_callback, void *userdata, int buffer_size) {
ReadProgram read_program;
int res = exec_program_pipe(args, &read_program);
if(res != 0)
return res;
int result = 0;
int status;
int exit_status;
assert(buffer_size >= 1 && buffer_size <= 65536);
char *buffer = (char*)alloca(buffer_size + 1);
for(;;) {
ssize_t bytes_read = read(read_program.read_fd, buffer, buffer_size);
if(bytes_read == 0) {
break;
} else if(bytes_read == -1) {
int err = errno;
fprintf(stderr, "Failed to read from pipe to program %s, error: %s\n", args[0], strerror(err));
result = -err;
break;
}
buffer[bytes_read] = '\0';
if(output_callback) {
result = output_callback(buffer, bytes_read, userdata);
if(result != 0)
break;
}
}
if(result != 0)
kill(read_program.pid, SIGTERM);
if(waitpid(read_program.pid, &status, 0) == -1) {
perror("waitpid failed");
result = -5;
goto cleanup;
}
if(!WIFEXITED(status)) {
result = -4;
goto cleanup;
}
exit_status = WEXITSTATUS(status);
if(exit_status != 0) {
fprintf(stderr, "Failed to execute program (");
const char **arg = args;
while(*arg) {
if(arg != args)
fputc(' ', stderr);
fprintf(stderr, "'%s'", *arg);
++arg;
}
fprintf(stderr, "), exit status %d\n", exit_status);
result = -exit_status;
}
cleanup:
program_clear_current_thread();
close(read_program.read_fd);
return result;
}
int wait_program(pid_t process_id) {
int status;
if(waitpid(process_id, &status, 0) == -1) {
int err = -errno;
perror("waitpid failed");
return err;
}
if(!WIFEXITED(status))
return -4;
return WEXITSTATUS(status);
}
int wait_program_non_blocking(pid_t process_id, int *status) {
int s;
int wait_result = waitpid(process_id, &s, WNOHANG);
if(wait_result == -1) {
int err = -errno;
perror("waitpid failed");
*status = err;
return 0;
} else if(wait_result == 0) {
/* the child process is still running */
*status = 0;
return 0;
}
if(!WIFEXITED(s)) {
*status = -4;
return 0;
}
*status = WEXITSTATUS(s);
return 1;
}
// TODO: Verify if this can cause issues when |result_process_id| is null, because |args| may be deallocated
// by the time its used in the last execvp.
int exec_program_async(const char **args, pid_t *result_process_id) {
/* 1 arguments */
if(args[0] == NULL)
return -1;
pid_t pid = vfork();
if(pid == -1) {
int err = errno;
perror("Failed to vfork");
return -err;
} else if(pid == 0) { /* child */
if(result_process_id) {
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else {
setsid();
signal(SIGHUP, SIG_IGN);
// Daemonize child to make the parent the init process which will reap the zombie child
pid_t second_child = vfork();
if(second_child == 0) { // child
execvp(args[0], (char* const*)args);
perror("execvp");
_exit(127);
} else if(second_child != -1) {
_exit(0);
}
}
} else { /* parent */
if(result_process_id)
*result_process_id = pid;
else
waitpid(pid, nullptr, 0);
}
return 0;
}
void program_clear_current_thread() {
current_thread_program.clear();
}
void program_kill_in_thread(std::thread::id thread_id) {
current_thread_program.kill_in_thread(thread_id);
}
bool program_is_dead_in_thread(std::thread::id thread_id) {
std::lock_guard<std::mutex> lock(thread_current_program_mutex);
auto it = thread_current_program.find(thread_id);
if(it != thread_current_program.end())
return it->second.killed;
return false;
}
bool program_is_dead_in_current_thread() {
return current_thread_program.is_killed();
}
|