aboutsummaryrefslogtreecommitdiff
path: root/src/axolotl.cpp
blob: a1ea03fb2baa40167785ee05c0e0e32045119397 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include "axolotl/axolotl.hh"


namespace {

std::uint8_t PROTOCOL_VERSION = 3;
std::size_t MAC_LENGTH = 8;
std::size_t KEY_LENGTH = Curve25519PublicKey::Length;
std::uint8_t MESSAGE_KEY_SEED[1] = {0x01};
std::uint8_t CHAIN_KEY_SEED[1] = {0x02};
std::size_t MAX_MESSAGE_GAP = 2000;

void create_chain_key(
    axolotl::SharedKey const & root_key,
    Curve25519KeyPair const & our_key,
    Curve25519PublicKey const & their_key,
    std::uint8_t const * info, std::size_t info_length,
    SharedSecret & new_root_key,
    ChainKey & new_chain_key
) {
    axolotl::SharedSecret secret;
    axolotl::curve25519_shared_secret(our_key, their_key, secret);
    std::uint8_t derived_secrets[64];
    axolotl::hkdf_sha256(
        secret, sizeof(secret),
        root_key, sizeof(root_key),
        info, info_length,
        derived_secrets, sizeof(derived_secrets)
    );
    std::memcpy(new_root_key, derived_secrets, 32);
    std::memcpy(new_chain_key.key, derived_secrets + 32, 32);
    new_chain_key.index = 0;
    std::memset(derived_secrets, 0, sizeof(derived_secrets);
    std::memset(secret, 0, sizeof(secret));
}


void advance_chain_key(
    ChainKey const & chain_key,
    ChainKey & new_chain_key,
) {
    axolotl::hmac_sha256(
        chain_key.key, sizeof(chain_key.key),
        CHAIN_KEY_SEED, sizeof(CHAIN_KEY_SEED),
        new_chain_key.key
    );
    new_chain_key.index = chain_key.index + 1;
}


void create_message_keys(
    ChainKey const & chain_key,
    std::uint8_t const * info, std::size_t info_length,
    MessageKey & message_key
) {
    axolotl::SharedSecret secret;
    axolotl::hmac_sha256(
        chain_key.key, sizeof(chain_key.key),
        MESSAGE_KEY_SEED, sizeof(MESSAGE_KEY_SEED),
        secret
    );
    std::uint8_t derived_secrets[80];
    axolotl::hkdf_sha256(
        secret, sizeof(secret),
        root_key, sizeof(root_key),
        info, info_length,
        derived_secrets, sizeof(derived_secrets)
    );
    std::memcpy(message_key.cipher_key, derived_secrets, 32);
    std::memcpy(message_key.mac_key, derived_secrets + 32, 32);
    std::memcpy(message_key.iv, derived_secrets + 64, 16);
    message_key.index = chain_key.index;
    std::memset(derived_secrets, 0, sizeof(derived_secrets);
    std::memset(secret, 0, sizeof(secret));
}


bool verify_mac(
    MessageKey const & message_key,
    std::uint8_t const * input,
    axolotl::MessageReader const & reader
) {
    std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH];
    axolotl::hmac_sha256(
        keys.mac_key, sizeof(keys.mac_key),
        ciphertext, reader.body_length,
        mac
    );

    bool result = std::memcmp(mac, reader.mac, MAC_LENGTH) == 0;
    std::memset(&mac, 0, HMAC_SHA256_OUTPUT_LENGTH);
    return result;
}


bool verify_mac_for_existing_chain(
    axolotl::Session const & session,
    axolotl::ReceiverChain const & chain,
    std::uint8_t const * input,
    axolotl::MessageReader const & reader
) {
    ReceiverChain new_chain = chain;

    if (reader.counter < chain.index) {
        return false;
    }

    /* Limit the number of hashes we're prepared to compute */
    if (reader.counter - chain.index > MAX_MESSAGE_GAP) {
        return false;
    }

    while (new_chain.index < reader.counter) {
        advance_chain_key(new_chain, new_chain);
    }

    MessageKey message_key;
    create_message_keys(
        new_chain_key, sender.message_info, sender.message_info_length,
        message_key
    );

    bool result = verify_mac(message_key, input, reader);
    std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key);
    return result;
}


bool verify_mac_for_new_chain(
    axolotl::Session const & session,
    std::uint8_t const * input,
    axolotl::MessageReader const & reader
) {
    SharedSecret new_root_key;
    ReceiverChain new_chain;

    /* They shouldn't move to a new chain until we've sent them a message
     * acknowledging the last one */
    if (session.sender_chain.empty()) {
        return false;
    }

    /* Limit the number of hashes we're prepared to compute */
    if (reader.counter > MAX_MESSAGE_GAP) {
        return false;
    }
    std::memcpy(new_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH);

    create_chain_key(
        root_key, sender_chain[0].ratchet_key, new_chain.ratchet_key,
        session.kdf_info.ratchet_info, session.kdf_info.ratchet_info_length,
        new_root_key, new_chain
    );

    bool result = verify_mac_for_existing_chain(
        session, new_chain, input, reader
    );
    std::memset(&new_root_key, 0, sizeof(new_root_key));
    std::memset(&new_chain, 0, sizeof(new_chain.ratchet_key);
    return result;
}

} // namespace


std::size_t axolotl::Session::encrypt_max_output_length(
    std::size_t plaintext_length
) {
    std::size_t key_length = 1 + varstring_length(Curve25519PublicKey::Length);
    std::size_t counter = sender_chain.empty() ? 0 : sender_chain[0].index;
    std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
    return axolotl::encode_message_length(
        counter, KEY_LENGTH, padded, MAC_LENGTH
    );
}


std::size_t axolotl::Session::encrypt_random_length() {
    return sender_chain.size() ? Curve25519PublicKey::Length : 0;
}


std::size_t axolotl::Session::encrypt(
    std::uint8_t const * plaintext, std::size_t plaintext_length,
    std::uint8_t const * random, std::size_t random_length,
    std::uint8_t * output, std::size_t max_output_length
) {
    if (random_length < encrypt_random_length()) {
        last_error = axolotl::ErrorCode::NOT_ENOUGH_RANDOM;
        return std::size_t(-1);
    }
    if (max_output_length < encrypt_max_output_length()) {
        last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
        return std::size_t(-1);
    }

    if (sender_chain.empty()) {
        /** create sender chain */
    }

    MessageKey keys;

    /** create message keys and advance chain */

    std::size_t padded = axolotl::aes_encrypt_cbc_length(plaintext_length);
    std::size_t key_length = Curve25519PublicKey::Length;
    std::uint32_t counter = keys.index;
    const Curve25519PublicKey &ratchet_key = sender_chain[0].ratchet_key;

    axolotl::MessageWriter writer(axolotl::encode_message(
        PROTOCOL_VERSION, counter, key_length, padded, cipher_text
    ));

    std::memcpy(writer.ratchet_key, ratchet_key.public_key, key_length);

    axolotl::aes_encrypt_cbc(
        keys.cipher_key, keys.iv,
        plaintext, plaintext_length,
        writer.ciphertext
    );

    std::uint8_t mac[HMAC_SHA256_OUTPUT_LENGTH];
    axolotl::hmac_sha256(
        keys.mac_key, sizeof(keys.mac_key),
        ciphertext, writer.body_length,
        mac
    );
    std::memcpy(writer.mac, mac, MAC_LENGTH);

    return writer.body_length + MAC_LENGTH;
}


std::size_t decrypt_max_plaintext_length(
    std::size_t input_length
) {
    return input_length;
}


std::size_t axolotl::Session::decrypt(
    std::uint8_t const * input, std::size_t input_length,
    std::uint8_t * plaintext, std::size_t max_plaintext_length
) {
    if (max_plaintext_length < decrypt_max_plaintext_length(input_length)) {
        last_error = axolotl::ErrorCode::OUTPUT_BUFFER_TOO_SMALL;
        return std::size_t(-1);
    }

    axolotl::MessageReader reader(axolotl::decode_message(
        input, input_length, MAC_LENGTH
    ));

    if (reader.version != PROTOCOL_VERSION) {
        last_error = axolotl::ErrorCode::BAD_MESSAGE_VERSION;
        return std::size_t(-1);
    }

    if (reader.body_length == 0
            || reader.ratchet_key_length != Curve25519PublicKey::Length) {
        last_error = axolotl::ErrorCode::BAD_MESSAGE_FORMAT;
        return std::size_t(-1);
    }

    ReceiverChain * chain = NULL;
    for (axolotl::ReceiverChain & receiver_chain : receiver_chains) {
        if (0 == std::memcmp(
                receiver_chain.ratchet_key, reader.ratchet_key, KEY_LENGTH
        )) {
            chain = &receiver_chain;
            break;
        }
    }

    if (!chain) {
        if (!verify_mac_for_new_chain(*this, input, reader)) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
            return std::size_t(-1);
        }
    } else {
        if (chain->index > reader.counter) {
            /* Chain already advanced beyond the key for this message
             * Check if the message keys are in the skipped key list. */
            for (const axolotl::SkippedMessageKey & skipped
                    : skipped_message_keys) {
                if (reader.counter == skipped.message_key.index
                        && 0 == std::memcmp(
                            skipped.ratchet_key, reader.ratchet_key, KEY_LENGTH
                        )) {
                    /* Found the key for this message. Check the MAC. */
                    if (!verify_mac(skipped.message_key, input, reader)) {
                        last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                        return std::size_t(-1);
                    }

                    std::size_t result = axolotl::aes_decrypt_cbc(
                        skipped.message_key.cipher_key,
                        skipped.message_key.iv,
                        reader.ciphertext, reader.ciphertext_length,
                        plaintext
                    );

                    if (result == std::size_t(-1)) {
                        last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
                        return result;
                    }

                    /* Remove the key from the skipped keys now that we've
                     * decoded the message it corresponds to. */
                    skipped_message_keys.erase(&skipped);
                    return result;
                }
            }
            /* No matching keys for the message, fail with bad mac */
            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
            return std::size_t(-1);
        } else if (!verify_mac_for_existing_chain(*chain, input, reader)) {
            last_error = axolotl::ErrorCode::BAD_MESSAGE_MAC;
            return std::size_t(-1);
        }
    }

    if (!chain) {
        
    }





}