diff options
Diffstat (limited to 'shared')
-rw-r--r-- | shared/Matrices.cpp | 581 | ||||
-rw-r--r-- | shared/Matrices.h | 909 | ||||
-rw-r--r-- | shared/Vectors.h | 530 |
3 files changed, 2020 insertions, 0 deletions
diff --git a/shared/Matrices.cpp b/shared/Matrices.cpp new file mode 100644 index 0000000..582b285 --- /dev/null +++ b/shared/Matrices.cpp @@ -0,0 +1,581 @@ +/////////////////////////////////////////////////////////////////////////////// +// Matrice.cpp +// =========== +// NxN Matrix Math classes +// +// The elements of the matrix are stored as column major order. +// | 0 2 | | 0 3 6 | | 0 4 8 12 | +// | 1 3 | | 1 4 7 | | 1 5 9 13 | +// | 2 5 8 | | 2 6 10 14 | +// | 3 7 11 15 | +// +// AUTHOR: Song Ho Ahn (song.ahn@gmail.com) +// CREATED: 2005-06-24 +// UPDATED: 2014-09-21 +// +// Copyright (C) 2005 Song Ho Ahn +/////////////////////////////////////////////////////////////////////////////// + +#include <cmath> +#include <algorithm> +#include "Matrices.h" + +const float DEG2RAD = 3.141593f / 180; +const float EPSILON = 0.00001f; + + + +/////////////////////////////////////////////////////////////////////////////// +// transpose 2x2 matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix2& Matrix2::transpose() +{ + std::swap(m[1], m[2]); + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// return the determinant of 2x2 matrix +/////////////////////////////////////////////////////////////////////////////// +float Matrix2::getDeterminant() +{ + return m[0] * m[3] - m[1] * m[2]; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// inverse of 2x2 matrix +// If cannot find inverse, set identity matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix2& Matrix2::invert() +{ + float determinant = getDeterminant(); + if(fabs(determinant) <= EPSILON) + { + return identity(); + } + + float tmp = m[0]; // copy the first element + float invDeterminant = 1.0f / determinant; + m[0] = invDeterminant * m[3]; + m[1] = -invDeterminant * m[1]; + m[2] = -invDeterminant * m[2]; + m[3] = invDeterminant * tmp; + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// transpose 3x3 matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix3& Matrix3::transpose() +{ + std::swap(m[1], m[3]); + std::swap(m[2], m[6]); + std::swap(m[5], m[7]); + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// return determinant of 3x3 matrix +/////////////////////////////////////////////////////////////////////////////// +float Matrix3::getDeterminant() +{ + return m[0] * (m[4] * m[8] - m[5] * m[7]) - + m[1] * (m[3] * m[8] - m[5] * m[6]) + + m[2] * (m[3] * m[7] - m[4] * m[6]); +} + + + +/////////////////////////////////////////////////////////////////////////////// +// inverse 3x3 matrix +// If cannot find inverse, set identity matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix3& Matrix3::invert() +{ + float determinant, invDeterminant; + float tmp[9]; + + tmp[0] = m[4] * m[8] - m[5] * m[7]; + tmp[1] = m[2] * m[7] - m[1] * m[8]; + tmp[2] = m[1] * m[5] - m[2] * m[4]; + tmp[3] = m[5] * m[6] - m[3] * m[8]; + tmp[4] = m[0] * m[8] - m[2] * m[6]; + tmp[5] = m[2] * m[3] - m[0] * m[5]; + tmp[6] = m[3] * m[7] - m[4] * m[6]; + tmp[7] = m[1] * m[6] - m[0] * m[7]; + tmp[8] = m[0] * m[4] - m[1] * m[3]; + + // check determinant if it is 0 + determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6]; + if(fabs(determinant) <= EPSILON) + { + return identity(); // cannot inverse, make it idenety matrix + } + + // divide by the determinant + invDeterminant = 1.0f / determinant; + m[0] = invDeterminant * tmp[0]; + m[1] = invDeterminant * tmp[1]; + m[2] = invDeterminant * tmp[2]; + m[3] = invDeterminant * tmp[3]; + m[4] = invDeterminant * tmp[4]; + m[5] = invDeterminant * tmp[5]; + m[6] = invDeterminant * tmp[6]; + m[7] = invDeterminant * tmp[7]; + m[8] = invDeterminant * tmp[8]; + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// transpose 4x4 matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::transpose() +{ + std::swap(m[1], m[4]); + std::swap(m[2], m[8]); + std::swap(m[3], m[12]); + std::swap(m[6], m[9]); + std::swap(m[7], m[13]); + std::swap(m[11], m[14]); + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// inverse 4x4 matrix +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::invert() +{ + // If the 4th row is [0,0,0,1] then it is affine matrix and + // it has no projective transformation. + if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1) + this->invertAffine(); + else + { + this->invertGeneral(); + /*@@ invertProjective() is not optimized (slower than generic one) + if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON) + this->invertProjective(); // inverse using matrix partition + else + this->invertGeneral(); // generalized inverse + */ + } + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// compute the inverse of 4x4 Euclidean transformation matrix +// +// Euclidean transformation is translation, rotation, and reflection. +// With Euclidean transform, only the position and orientation of the object +// will be changed. Euclidean transform does not change the shape of an object +// (no scaling). Length and angle are reserved. +// +// Use inverseAffine() if the matrix has scale and shear transformation. +// +// M = [ R | T ] +// [ --+-- ] (R denotes 3x3 rotation/reflection matrix) +// [ 0 | 1 ] (T denotes 1x3 translation matrix) +// +// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T +// (R is orthogonal, R^-1 = R^T) +// +// [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix) +// [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation) +// [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose) +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::invertEuclidean() +{ + // transpose 3x3 rotation matrix part + // | R^T | 0 | + // | ----+-- | + // | 0 | 1 | + float tmp; + tmp = m[1]; m[1] = m[4]; m[4] = tmp; + tmp = m[2]; m[2] = m[8]; m[8] = tmp; + tmp = m[6]; m[6] = m[9]; m[9] = tmp; + + // compute translation part -R^T * T + // | 0 | -R^T x | + // | --+------- | + // | 0 | 0 | + float x = m[12]; + float y = m[13]; + float z = m[14]; + m[12] = -(m[0] * x + m[4] * y + m[8] * z); + m[13] = -(m[1] * x + m[5] * y + m[9] * z); + m[14] = -(m[2] * x + m[6] * y + m[10]* z); + + // last row should be unchanged (0,0,0,1) + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// compute the inverse of a 4x4 affine transformation matrix +// +// Affine transformations are generalizations of Euclidean transformations. +// Affine transformation includes translation, rotation, reflection, scaling, +// and shearing. Length and angle are NOT preserved. +// M = [ R | T ] +// [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix) +// [ 0 | 1 ] (T denotes 1x3 translation matrix) +// +// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T +// +// [ R | T ]-1 [ R^-1 | -R^-1 * T ] +// [ --+-- ] = [ -----+---------- ] +// [ 0 | 1 ] [ 0 + 1 ] +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::invertAffine() +{ + // R^-1 + Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]); + r.invert(); + m[0] = r[0]; m[1] = r[1]; m[2] = r[2]; + m[4] = r[3]; m[5] = r[4]; m[6] = r[5]; + m[8] = r[6]; m[9] = r[7]; m[10]= r[8]; + + // -R^-1 * T + float x = m[12]; + float y = m[13]; + float z = m[14]; + m[12] = -(r[0] * x + r[3] * y + r[6] * z); + m[13] = -(r[1] * x + r[4] * y + r[7] * z); + m[14] = -(r[2] * x + r[5] * y + r[8] * z); + + // last row should be unchanged (0,0,0,1) + //m[3] = m[7] = m[11] = 0.0f; + //m[15] = 1.0f; + + return * this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// inverse matrix using matrix partitioning (blockwise inverse) +// It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where +// det(A) != 0. If not, use the generic inverse method +// inverse formula. +// M = [ A | B ] A, B, C, D are 2x2 matrix blocks +// [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)| +// [ C | D ] +// +// M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C' +// [ ---+--- ] B' = (A^-1 * B) * -D' +// [ C' | D' ] C' = -D' * (C * A^-1) +// D' = (D - ((C * A^-1) * B))^-1 +// +// NOTE: I wrap with () if it it used more than once. +// The matrix is invertable even if det(A)=0, so must check det(A) before +// calling this function, and use invertGeneric() instead. +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::invertProjective() +{ + // partition + Matrix2 a(m[0], m[1], m[4], m[5]); + Matrix2 b(m[8], m[9], m[12], m[13]); + Matrix2 c(m[2], m[3], m[6], m[7]); + Matrix2 d(m[10], m[11], m[14], m[15]); + + // pre-compute repeated parts + a.invert(); // A^-1 + Matrix2 ab = a * b; // A^-1 * B + Matrix2 ca = c * a; // C * A^-1 + Matrix2 cab = ca * b; // C * A^-1 * B + Matrix2 dcab = d - cab; // D - C * A^-1 * B + + // check determinant if |D - C * A^-1 * B| = 0 + //NOTE: this function assumes det(A) is already checked. if |A|=0 then, + // cannot use this function. + float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2]; + if(fabs(determinant) <= EPSILON) + { + return identity(); + } + + // compute D' and -D' + Matrix2 d1 = dcab; // (D - C * A^-1 * B) + d1.invert(); // (D - C * A^-1 * B)^-1 + Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1 + + // compute C' + Matrix2 c1 = d2 * ca; // -D' * (C * A^-1) + + // compute B' + Matrix2 b1 = ab * d2; // (A^-1 * B) * -D' + + // compute A' + Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C' + + // assemble inverse matrix + m[0] = a1[0]; m[4] = a1[2]; /*|*/ m[8] = b1[0]; m[12]= b1[2]; + m[1] = a1[1]; m[5] = a1[3]; /*|*/ m[9] = b1[1]; m[13]= b1[3]; + /*-----------------------------+-----------------------------*/ + m[2] = c1[0]; m[6] = c1[2]; /*|*/ m[10]= d1[0]; m[14]= d1[2]; + m[3] = c1[1]; m[7] = c1[3]; /*|*/ m[11]= d1[1]; m[15]= d1[3]; + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// compute the inverse of a general 4x4 matrix using Cramer's Rule +// If cannot find inverse, return indentity matrix +// M^-1 = adj(M) / det(M) +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::invertGeneral() +{ + // get cofactors of minor matrices + float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]); + float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]); + float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]); + float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); + + // get determinant + float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3; + if(fabs(determinant) <= EPSILON) + { + return identity(); + } + + // get rest of cofactors for adj(M) + float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]); + float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]); + float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]); + float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]); + + float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[13],m[14],m[15]); + float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[12],m[14],m[15]); + float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[12],m[13],m[15]); + float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[12],m[13],m[14]); + + float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[9], m[10],m[11]); + float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[8], m[10],m[11]); + float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[8], m[9], m[11]); + float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[8], m[9], m[10]); + + // build inverse matrix = adj(M) / det(M) + // adjugate of M is the transpose of the cofactor matrix of M + float invDeterminant = 1.0f / determinant; + m[0] = invDeterminant * cofactor0; + m[1] = -invDeterminant * cofactor4; + m[2] = invDeterminant * cofactor8; + m[3] = -invDeterminant * cofactor12; + + m[4] = -invDeterminant * cofactor1; + m[5] = invDeterminant * cofactor5; + m[6] = -invDeterminant * cofactor9; + m[7] = invDeterminant * cofactor13; + + m[8] = invDeterminant * cofactor2; + m[9] = -invDeterminant * cofactor6; + m[10]= invDeterminant * cofactor10; + m[11]= -invDeterminant * cofactor14; + + m[12]= -invDeterminant * cofactor3; + m[13]= invDeterminant * cofactor7; + m[14]= -invDeterminant * cofactor11; + m[15]= invDeterminant * cofactor15; + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// return determinant of 4x4 matrix +/////////////////////////////////////////////////////////////////////////////// +float Matrix4::getDeterminant() +{ + return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) - + m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) + + m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) - + m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]); +} + + + +/////////////////////////////////////////////////////////////////////////////// +// compute cofactor of 3x3 minor matrix without sign +// input params are 9 elements of the minor matrix +// NOTE: The caller must know its sign. +/////////////////////////////////////////////////////////////////////////////// +float Matrix4::getCofactor(float m0, float m1, float m2, + float m3, float m4, float m5, + float m6, float m7, float m8) +{ + return m0 * (m4 * m8 - m5 * m7) - + m1 * (m3 * m8 - m5 * m6) + + m2 * (m3 * m7 - m4 * m6); +} + + + +/////////////////////////////////////////////////////////////////////////////// +// translate this matrix by (x, y, z) +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::translate(const Vector3& v) +{ + return translate(v.x, v.y, v.z); +} + +Matrix4& Matrix4::translate(float x, float y, float z) +{ + m[0] += m[3] * x; m[4] += m[7] * x; m[8] += m[11]* x; m[12]+= m[15]* x; + m[1] += m[3] * y; m[5] += m[7] * y; m[9] += m[11]* y; m[13]+= m[15]* y; + m[2] += m[3] * z; m[6] += m[7] * z; m[10]+= m[11]* z; m[14]+= m[15]* z; + + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// uniform scale +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::scale(float s) +{ + return scale(s, s, s); +} + +Matrix4& Matrix4::scale(float x, float y, float z) +{ + m[0] *= x; m[4] *= x; m[8] *= x; m[12] *= x; + m[1] *= y; m[5] *= y; m[9] *= y; m[13] *= y; + m[2] *= z; m[6] *= z; m[10]*= z; m[14] *= z; + return *this; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// build a rotation matrix with given angle(degree) and rotation axis, then +// multiply it with this object +/////////////////////////////////////////////////////////////////////////////// +Matrix4& Matrix4::rotate(float angle, const Vector3& axis) +{ + return rotate(angle, axis.x, axis.y, axis.z); +} + +Matrix4& Matrix4::rotate(float angle, float x, float y, float z) +{ + float c = cosf(angle * DEG2RAD); // cosine + float s = sinf(angle * DEG2RAD); // sine + float c1 = 1.0f - c; // 1 - c + float m0 = m[0], m4 = m[4], m8 = m[8], m12= m[12], + m1 = m[1], m5 = m[5], m9 = m[9], m13= m[13], + m2 = m[2], m6 = m[6], m10= m[10], m14= m[14]; + + // build rotation matrix + float r0 = x * x * c1 + c; + float r1 = x * y * c1 + z * s; + float r2 = x * z * c1 - y * s; + float r4 = x * y * c1 - z * s; + float r5 = y * y * c1 + c; + float r6 = y * z * c1 + x * s; + float r8 = x * z * c1 + y * s; + float r9 = y * z * c1 - x * s; + float r10= z * z * c1 + c; + + // multiply rotation matrix + m[0] = r0 * m0 + r4 * m1 + r8 * m2; + m[1] = r1 * m0 + r5 * m1 + r9 * m2; + m[2] = r2 * m0 + r6 * m1 + r10* m2; + m[4] = r0 * m4 + r4 * m5 + r8 * m6; + m[5] = r1 * m4 + r5 * m5 + r9 * m6; + m[6] = r2 * m4 + r6 * m5 + r10* m6; + m[8] = r0 * m8 + r4 * m9 + r8 * m10; + m[9] = r1 * m8 + r5 * m9 + r9 * m10; + m[10]= r2 * m8 + r6 * m9 + r10* m10; + m[12]= r0 * m12+ r4 * m13+ r8 * m14; + m[13]= r1 * m12+ r5 * m13+ r9 * m14; + m[14]= r2 * m12+ r6 * m13+ r10* m14; + + return *this; +} + +Matrix4& Matrix4::rotateX(float angle) +{ + float c = cosf(angle * DEG2RAD); + float s = sinf(angle * DEG2RAD); + float m1 = m[1], m2 = m[2], + m5 = m[5], m6 = m[6], + m9 = m[9], m10= m[10], + m13= m[13], m14= m[14]; + + m[1] = m1 * c + m2 *-s; + m[2] = m1 * s + m2 * c; + m[5] = m5 * c + m6 *-s; + m[6] = m5 * s + m6 * c; + m[9] = m9 * c + m10*-s; + m[10]= m9 * s + m10* c; + m[13]= m13* c + m14*-s; + m[14]= m13* s + m14* c; + + return *this; +} + +Matrix4& Matrix4::rotateY(float angle) +{ + float c = cosf(angle * DEG2RAD); + float s = sinf(angle * DEG2RAD); + float m0 = m[0], m2 = m[2], + m4 = m[4], m6 = m[6], + m8 = m[8], m10= m[10], + m12= m[12], m14= m[14]; + + m[0] = m0 * c + m2 * s; + m[2] = m0 *-s + m2 * c; + m[4] = m4 * c + m6 * s; + m[6] = m4 *-s + m6 * c; + m[8] = m8 * c + m10* s; + m[10]= m8 *-s + m10* c; + m[12]= m12* c + m14* s; + m[14]= m12*-s + m14* c; + + return *this; +} + +Matrix4& Matrix4::rotateZ(float angle) +{ + float c = cosf(angle * DEG2RAD); + float s = sinf(angle * DEG2RAD); + float m0 = m[0], m1 = m[1], + m4 = m[4], m5 = m[5], + m8 = m[8], m9 = m[9], + m12= m[12], m13= m[13]; + + m[0] = m0 * c + m1 *-s; + m[1] = m0 * s + m1 * c; + m[4] = m4 * c + m5 *-s; + m[5] = m4 * s + m5 * c; + m[8] = m8 * c + m9 *-s; + m[9] = m8 * s + m9 * c; + m[12]= m12* c + m13*-s; + m[13]= m12* s + m13* c; + + return *this; +} diff --git a/shared/Matrices.h b/shared/Matrices.h new file mode 100644 index 0000000..3515f54 --- /dev/null +++ b/shared/Matrices.h @@ -0,0 +1,909 @@ +/////////////////////////////////////////////////////////////////////////////// +// Matrice.h +// ========= +// NxN Matrix Math classes +// +// The elements of the matrix are stored as column major order. +// | 0 2 | | 0 3 6 | | 0 4 8 12 | +// | 1 3 | | 1 4 7 | | 1 5 9 13 | +// | 2 5 8 | | 2 6 10 14 | +// | 3 7 11 15 | +// +// AUTHOR: Song Ho Ahn (song.ahn@gmail.com) +// CREATED: 2005-06-24 +// UPDATED: 2013-09-30 +// +// Copyright (C) 2005 Song Ho Ahn +/////////////////////////////////////////////////////////////////////////////// + +#ifndef MATH_MATRICES_H +#define MATH_MATRICES_H + +#include <iostream> +#include <iomanip> +#include "Vectors.h" + +/////////////////////////////////////////////////////////////////////////// +// 2x2 matrix +/////////////////////////////////////////////////////////////////////////// +class Matrix2 +{ +public: + // constructors + Matrix2(); // init with identity + Matrix2(const float src[4]); + Matrix2(float m0, float m1, float m2, float m3); + + void set(const float src[4]); + void set(float m0, float m1, float m2, float m3); + void setRow(int index, const float row[2]); + void setRow(int index, const Vector2& v); + void setColumn(int index, const float col[2]); + void setColumn(int index, const Vector2& v); + + const float* get() const; + float getDeterminant(); + + Matrix2& identity(); + Matrix2& transpose(); // transpose itself and return reference + Matrix2& invert(); + + // operators + Matrix2 operator+(const Matrix2& rhs) const; // add rhs + Matrix2 operator-(const Matrix2& rhs) const; // subtract rhs + Matrix2& operator+=(const Matrix2& rhs); // add rhs and update this object + Matrix2& operator-=(const Matrix2& rhs); // subtract rhs and update this object + Vector2 operator*(const Vector2& rhs) const; // multiplication: v' = M * v + Matrix2 operator*(const Matrix2& rhs) const; // multiplication: M3 = M1 * M2 + Matrix2& operator*=(const Matrix2& rhs); // multiplication: M1' = M1 * M2 + bool operator==(const Matrix2& rhs) const; // exact compare, no epsilon + bool operator!=(const Matrix2& rhs) const; // exact compare, no epsilon + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Matrix2 operator-(const Matrix2& m); // unary operator (-) + friend Matrix2 operator*(float scalar, const Matrix2& m); // pre-multiplication + friend Vector2 operator*(const Vector2& vec, const Matrix2& m); // pre-multiplication + friend std::ostream& operator<<(std::ostream& os, const Matrix2& m); + +protected: + +private: + float m[4]; + +}; + + + +/////////////////////////////////////////////////////////////////////////// +// 3x3 matrix +/////////////////////////////////////////////////////////////////////////// +class Matrix3 +{ +public: + // constructors + Matrix3(); // init with identity + Matrix3(const float src[9]); + Matrix3(float m0, float m1, float m2, // 1st column + float m3, float m4, float m5, // 2nd column + float m6, float m7, float m8); // 3rd column + + void set(const float src[9]); + void set(float m0, float m1, float m2, // 1st column + float m3, float m4, float m5, // 2nd column + float m6, float m7, float m8); // 3rd column + void setRow(int index, const float row[3]); + void setRow(int index, const Vector3& v); + void setColumn(int index, const float col[3]); + void setColumn(int index, const Vector3& v); + + const float* get() const; + float getDeterminant(); + + Matrix3& identity(); + Matrix3& transpose(); // transpose itself and return reference + Matrix3& invert(); + + // operators + Matrix3 operator+(const Matrix3& rhs) const; // add rhs + Matrix3 operator-(const Matrix3& rhs) const; // subtract rhs + Matrix3& operator+=(const Matrix3& rhs); // add rhs and update this object + Matrix3& operator-=(const Matrix3& rhs); // subtract rhs and update this object + Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v + Matrix3 operator*(const Matrix3& rhs) const; // multiplication: M3 = M1 * M2 + Matrix3& operator*=(const Matrix3& rhs); // multiplication: M1' = M1 * M2 + bool operator==(const Matrix3& rhs) const; // exact compare, no epsilon + bool operator!=(const Matrix3& rhs) const; // exact compare, no epsilon + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Matrix3 operator-(const Matrix3& m); // unary operator (-) + friend Matrix3 operator*(float scalar, const Matrix3& m); // pre-multiplication + friend Vector3 operator*(const Vector3& vec, const Matrix3& m); // pre-multiplication + friend std::ostream& operator<<(std::ostream& os, const Matrix3& m); + +protected: + +private: + float m[9]; + +}; + + + +/////////////////////////////////////////////////////////////////////////// +// 4x4 matrix +/////////////////////////////////////////////////////////////////////////// +class Matrix4 +{ +public: + // constructors + Matrix4(); // init with identity + Matrix4(const float src[16]); + Matrix4(float m00, float m01, float m02, float m03, // 1st column + float m04, float m05, float m06, float m07, // 2nd column + float m08, float m09, float m10, float m11, // 3rd column + float m12, float m13, float m14, float m15);// 4th column + + void set(const float src[16]); + void set(float m00, float m01, float m02, float m03, // 1st column + float m04, float m05, float m06, float m07, // 2nd column + float m08, float m09, float m10, float m11, // 3rd column + float m12, float m13, float m14, float m15);// 4th column + void setRow(int index, const float row[4]); + void setRow(int index, const Vector4& v); + void setRow(int index, const Vector3& v); + void setColumn(int index, const float col[4]); + void setColumn(int index, const Vector4& v); + void setColumn(int index, const Vector3& v); + + const float* get() const; + const float* getTranspose(); // return transposed matrix + float getDeterminant(); + + Matrix4& identity(); + Matrix4& transpose(); // transpose itself and return reference + Matrix4& invert(); // check best inverse method before inverse + Matrix4& invertEuclidean(); // inverse of Euclidean transform matrix + Matrix4& invertAffine(); // inverse of affine transform matrix + Matrix4& invertProjective(); // inverse of projective matrix using partitioning + Matrix4& invertGeneral(); // inverse of generic matrix + + // transform matrix + Matrix4& translate(float x, float y, float z); // translation by (x,y,z) + Matrix4& translate(const Vector3& v); // + Matrix4& rotate(float angle, const Vector3& axis); // rotate angle(degree) along the given axix + Matrix4& rotate(float angle, float x, float y, float z); + Matrix4& rotateX(float angle); // rotate on X-axis with degree + Matrix4& rotateY(float angle); // rotate on Y-axis with degree + Matrix4& rotateZ(float angle); // rotate on Z-axis with degree + Matrix4& scale(float scale); // uniform scale + Matrix4& scale(float sx, float sy, float sz); // scale by (sx, sy, sz) on each axis + + // operators + Matrix4 operator+(const Matrix4& rhs) const; // add rhs + Matrix4 operator-(const Matrix4& rhs) const; // subtract rhs + Matrix4& operator+=(const Matrix4& rhs); // add rhs and update this object + Matrix4& operator-=(const Matrix4& rhs); // subtract rhs and update this object + Vector4 operator*(const Vector4& rhs) const; // multiplication: v' = M * v + Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v + Matrix4 operator*(const Matrix4& rhs) const; // multiplication: M3 = M1 * M2 + Matrix4& operator*=(const Matrix4& rhs); // multiplication: M1' = M1 * M2 + bool operator==(const Matrix4& rhs) const; // exact compare, no epsilon + bool operator!=(const Matrix4& rhs) const; // exact compare, no epsilon + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Matrix4 operator-(const Matrix4& m); // unary operator (-) + friend Matrix4 operator*(float scalar, const Matrix4& m); // pre-multiplication + friend Vector3 operator*(const Vector3& vec, const Matrix4& m); // pre-multiplication + friend Vector4 operator*(const Vector4& vec, const Matrix4& m); // pre-multiplication + friend std::ostream& operator<<(std::ostream& os, const Matrix4& m); + +protected: + +private: + float getCofactor(float m0, float m1, float m2, + float m3, float m4, float m5, + float m6, float m7, float m8); + + float m[16]; + float tm[16]; // transpose m + +}; + + + +/////////////////////////////////////////////////////////////////////////// +// inline functions for Matrix2 +/////////////////////////////////////////////////////////////////////////// +inline Matrix2::Matrix2() +{ + // initially identity matrix + identity(); +} + + + +inline Matrix2::Matrix2(const float src[4]) +{ + set(src); +} + + + +inline Matrix2::Matrix2(float m0, float m1, float m2, float m3) +{ + set(m0, m1, m2, m3); +} + + + +inline void Matrix2::set(const float src[4]) +{ + m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3]; +} + + + +inline void Matrix2::set(float m0, float m1, float m2, float m3) +{ + m[0]= m0; m[1] = m1; m[2] = m2; m[3]= m3; +} + + + +inline void Matrix2::setRow(int index, const float row[2]) +{ + m[index] = row[0]; m[index + 2] = row[1]; +} + + + +inline void Matrix2::setRow(int index, const Vector2& v) +{ + m[index] = v.x; m[index + 2] = v.y; +} + + + +inline void Matrix2::setColumn(int index, const float col[2]) +{ + m[index*2] = col[0]; m[index*2 + 1] = col[1]; +} + + + +inline void Matrix2::setColumn(int index, const Vector2& v) +{ + m[index*2] = v.x; m[index*2 + 1] = v.y; +} + + + +inline const float* Matrix2::get() const +{ + return m; +} + + + +inline Matrix2& Matrix2::identity() +{ + m[0] = m[3] = 1.0f; + m[1] = m[2] = 0.0f; + return *this; +} + + + +inline Matrix2 Matrix2::operator+(const Matrix2& rhs) const +{ + return Matrix2(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3]); +} + + + +inline Matrix2 Matrix2::operator-(const Matrix2& rhs) const +{ + return Matrix2(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3]); +} + + + +inline Matrix2& Matrix2::operator+=(const Matrix2& rhs) +{ + m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3]; + return *this; +} + + + +inline Matrix2& Matrix2::operator-=(const Matrix2& rhs) +{ + m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3]; + return *this; +} + + + +inline Vector2 Matrix2::operator*(const Vector2& rhs) const +{ + return Vector2(m[0]*rhs.x + m[2]*rhs.y, m[1]*rhs.x + m[3]*rhs.y); +} + + + +inline Matrix2 Matrix2::operator*(const Matrix2& rhs) const +{ + return Matrix2(m[0]*rhs[0] + m[2]*rhs[1], m[1]*rhs[0] + m[3]*rhs[1], + m[0]*rhs[2] + m[2]*rhs[3], m[1]*rhs[2] + m[3]*rhs[3]); +} + + + +inline Matrix2& Matrix2::operator*=(const Matrix2& rhs) +{ + *this = *this * rhs; + return *this; +} + + + +inline bool Matrix2::operator==(const Matrix2& rhs) const +{ + return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) && (m[3] == rhs[3]); +} + + + +inline bool Matrix2::operator!=(const Matrix2& rhs) const +{ + return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) || (m[3] != rhs[3]); +} + + + +inline float Matrix2::operator[](int index) const +{ + return m[index]; +} + + + +inline float& Matrix2::operator[](int index) +{ + return m[index]; +} + + + +inline Matrix2 operator-(const Matrix2& rhs) +{ + return Matrix2(-rhs[0], -rhs[1], -rhs[2], -rhs[3]); +} + + + +inline Matrix2 operator*(float s, const Matrix2& rhs) +{ + return Matrix2(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3]); +} + + + +inline Vector2 operator*(const Vector2& v, const Matrix2& rhs) +{ + return Vector2(v.x*rhs[0] + v.y*rhs[1], v.x*rhs[2] + v.y*rhs[3]); +} + + + +inline std::ostream& operator<<(std::ostream& os, const Matrix2& m) +{ + os << std::fixed << std::setprecision(5); + os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[2] << "]\n" + << "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[3] << "]\n"; + os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield); + return os; +} +// END OF MATRIX2 INLINE ////////////////////////////////////////////////////// + + + + +/////////////////////////////////////////////////////////////////////////// +// inline functions for Matrix3 +/////////////////////////////////////////////////////////////////////////// +inline Matrix3::Matrix3() +{ + // initially identity matrix + identity(); +} + + + +inline Matrix3::Matrix3(const float src[9]) +{ + set(src); +} + + + +inline Matrix3::Matrix3(float m0, float m1, float m2, + float m3, float m4, float m5, + float m6, float m7, float m8) +{ + set(m0, m1, m2, m3, m4, m5, m6, m7, m8); +} + + + +inline void Matrix3::set(const float src[9]) +{ + m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; + m[3] = src[3]; m[4] = src[4]; m[5] = src[5]; + m[6] = src[6]; m[7] = src[7]; m[8] = src[8]; +} + + + +inline void Matrix3::set(float m0, float m1, float m2, + float m3, float m4, float m5, + float m6, float m7, float m8) +{ + m[0] = m0; m[1] = m1; m[2] = m2; + m[3] = m3; m[4] = m4; m[5] = m5; + m[6] = m6; m[7] = m7; m[8] = m8; +} + + + +inline void Matrix3::setRow(int index, const float row[3]) +{ + m[index] = row[0]; m[index + 3] = row[1]; m[index + 6] = row[2]; +} + + + +inline void Matrix3::setRow(int index, const Vector3& v) +{ + m[index] = v.x; m[index + 3] = v.y; m[index + 6] = v.z; +} + + + +inline void Matrix3::setColumn(int index, const float col[3]) +{ + m[index*3] = col[0]; m[index*3 + 1] = col[1]; m[index*3 + 2] = col[2]; +} + + + +inline void Matrix3::setColumn(int index, const Vector3& v) +{ + m[index*3] = v.x; m[index*3 + 1] = v.y; m[index*3 + 2] = v.z; +} + + + +inline const float* Matrix3::get() const +{ + return m; +} + + + +inline Matrix3& Matrix3::identity() +{ + m[0] = m[4] = m[8] = 1.0f; + m[1] = m[2] = m[3] = m[5] = m[6] = m[7] = 0.0f; + return *this; +} + + + +inline Matrix3 Matrix3::operator+(const Matrix3& rhs) const +{ + return Matrix3(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], + m[3]+rhs[3], m[4]+rhs[4], m[5]+rhs[5], + m[6]+rhs[6], m[7]+rhs[7], m[8]+rhs[8]); +} + + + +inline Matrix3 Matrix3::operator-(const Matrix3& rhs) const +{ + return Matrix3(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], + m[3]-rhs[3], m[4]-rhs[4], m[5]-rhs[5], + m[6]-rhs[6], m[7]-rhs[7], m[8]-rhs[8]); +} + + + +inline Matrix3& Matrix3::operator+=(const Matrix3& rhs) +{ + m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; + m[3] += rhs[3]; m[4] += rhs[4]; m[5] += rhs[5]; + m[6] += rhs[6]; m[7] += rhs[7]; m[8] += rhs[8]; + return *this; +} + + + +inline Matrix3& Matrix3::operator-=(const Matrix3& rhs) +{ + m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; + m[3] -= rhs[3]; m[4] -= rhs[4]; m[5] -= rhs[5]; + m[6] -= rhs[6]; m[7] -= rhs[7]; m[8] -= rhs[8]; + return *this; +} + + + +inline Vector3 Matrix3::operator*(const Vector3& rhs) const +{ + return Vector3(m[0]*rhs.x + m[3]*rhs.y + m[6]*rhs.z, + m[1]*rhs.x + m[4]*rhs.y + m[7]*rhs.z, + m[2]*rhs.x + m[5]*rhs.y + m[8]*rhs.z); +} + + + +inline Matrix3 Matrix3::operator*(const Matrix3& rhs) const +{ + return Matrix3(m[0]*rhs[0] + m[3]*rhs[1] + m[6]*rhs[2], m[1]*rhs[0] + m[4]*rhs[1] + m[7]*rhs[2], m[2]*rhs[0] + m[5]*rhs[1] + m[8]*rhs[2], + m[0]*rhs[3] + m[3]*rhs[4] + m[6]*rhs[5], m[1]*rhs[3] + m[4]*rhs[4] + m[7]*rhs[5], m[2]*rhs[3] + m[5]*rhs[4] + m[8]*rhs[5], + m[0]*rhs[6] + m[3]*rhs[7] + m[6]*rhs[8], m[1]*rhs[6] + m[4]*rhs[7] + m[7]*rhs[8], m[2]*rhs[6] + m[5]*rhs[7] + m[8]*rhs[8]); +} + + + +inline Matrix3& Matrix3::operator*=(const Matrix3& rhs) +{ + *this = *this * rhs; + return *this; +} + + + +inline bool Matrix3::operator==(const Matrix3& rhs) const +{ + return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) && + (m[3] == rhs[3]) && (m[4] == rhs[4]) && (m[5] == rhs[5]) && + (m[6] == rhs[6]) && (m[7] == rhs[7]) && (m[8] == rhs[8]); +} + + + +inline bool Matrix3::operator!=(const Matrix3& rhs) const +{ + return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) || + (m[3] != rhs[3]) || (m[4] != rhs[4]) || (m[5] != rhs[5]) || + (m[6] != rhs[6]) || (m[7] != rhs[7]) || (m[8] != rhs[8]); +} + + + +inline float Matrix3::operator[](int index) const +{ + return m[index]; +} + + + +inline float& Matrix3::operator[](int index) +{ + return m[index]; +} + + + +inline Matrix3 operator-(const Matrix3& rhs) +{ + return Matrix3(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8]); +} + + + +inline Matrix3 operator*(float s, const Matrix3& rhs) +{ + return Matrix3(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8]); +} + + + +inline Vector3 operator*(const Vector3& v, const Matrix3& m) +{ + return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[3] + v.y*m[4] + v.z*m[5], v.x*m[6] + v.y*m[7] + v.z*m[8]); +} + + + +inline std::ostream& operator<<(std::ostream& os, const Matrix3& m) +{ + os << std::fixed << std::setprecision(5); + os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[3] << " " << std::setw(10) << m[6] << "]\n" + << "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[7] << "]\n" + << "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[8] << "]\n"; + os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield); + return os; +} +// END OF MATRIX3 INLINE ////////////////////////////////////////////////////// + + + + +/////////////////////////////////////////////////////////////////////////// +// inline functions for Matrix4 +/////////////////////////////////////////////////////////////////////////// +inline Matrix4::Matrix4() +{ + // initially identity matrix + identity(); +} + + + +inline Matrix4::Matrix4(const float src[16]) +{ + set(src); +} + + + +inline Matrix4::Matrix4(float m00, float m01, float m02, float m03, + float m04, float m05, float m06, float m07, + float m08, float m09, float m10, float m11, + float m12, float m13, float m14, float m15) +{ + set(m00, m01, m02, m03, m04, m05, m06, m07, m08, m09, m10, m11, m12, m13, m14, m15); +} + + + +inline void Matrix4::set(const float src[16]) +{ + m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3]; + m[4] = src[4]; m[5] = src[5]; m[6] = src[6]; m[7] = src[7]; + m[8] = src[8]; m[9] = src[9]; m[10]= src[10]; m[11]= src[11]; + m[12]= src[12]; m[13]= src[13]; m[14]= src[14]; m[15]= src[15]; +} + + + +inline void Matrix4::set(float m00, float m01, float m02, float m03, + float m04, float m05, float m06, float m07, + float m08, float m09, float m10, float m11, + float m12, float m13, float m14, float m15) +{ + m[0] = m00; m[1] = m01; m[2] = m02; m[3] = m03; + m[4] = m04; m[5] = m05; m[6] = m06; m[7] = m07; + m[8] = m08; m[9] = m09; m[10]= m10; m[11]= m11; + m[12]= m12; m[13]= m13; m[14]= m14; m[15]= m15; +} + + + +inline void Matrix4::setRow(int index, const float row[4]) +{ + m[index] = row[0]; m[index + 4] = row[1]; m[index + 8] = row[2]; m[index + 12] = row[3]; +} + + + +inline void Matrix4::setRow(int index, const Vector4& v) +{ + m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z; m[index + 12] = v.w; +} + + + +inline void Matrix4::setRow(int index, const Vector3& v) +{ + m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z; +} + + + +inline void Matrix4::setColumn(int index, const float col[4]) +{ + m[index*4] = col[0]; m[index*4 + 1] = col[1]; m[index*4 + 2] = col[2]; m[index*4 + 3] = col[3]; +} + + + +inline void Matrix4::setColumn(int index, const Vector4& v) +{ + m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z; m[index*4 + 3] = v.w; +} + + + +inline void Matrix4::setColumn(int index, const Vector3& v) +{ + m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z; +} + + + +inline const float* Matrix4::get() const +{ + return m; +} + + + +inline const float* Matrix4::getTranspose() +{ + tm[0] = m[0]; tm[1] = m[4]; tm[2] = m[8]; tm[3] = m[12]; + tm[4] = m[1]; tm[5] = m[5]; tm[6] = m[9]; tm[7] = m[13]; + tm[8] = m[2]; tm[9] = m[6]; tm[10]= m[10]; tm[11]= m[14]; + tm[12]= m[3]; tm[13]= m[7]; tm[14]= m[11]; tm[15]= m[15]; + return tm; +} + + + +inline Matrix4& Matrix4::identity() +{ + m[0] = m[5] = m[10] = m[15] = 1.0f; + m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0.0f; + return *this; +} + + + +inline Matrix4 Matrix4::operator+(const Matrix4& rhs) const +{ + return Matrix4(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3], + m[4]+rhs[4], m[5]+rhs[5], m[6]+rhs[6], m[7]+rhs[7], + m[8]+rhs[8], m[9]+rhs[9], m[10]+rhs[10], m[11]+rhs[11], + m[12]+rhs[12], m[13]+rhs[13], m[14]+rhs[14], m[15]+rhs[15]); +} + + + +inline Matrix4 Matrix4::operator-(const Matrix4& rhs) const +{ + return Matrix4(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3], + m[4]-rhs[4], m[5]-rhs[5], m[6]-rhs[6], m[7]-rhs[7], + m[8]-rhs[8], m[9]-rhs[9], m[10]-rhs[10], m[11]-rhs[11], + m[12]-rhs[12], m[13]-rhs[13], m[14]-rhs[14], m[15]-rhs[15]); +} + + + +inline Matrix4& Matrix4::operator+=(const Matrix4& rhs) +{ + m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3]; + m[4] += rhs[4]; m[5] += rhs[5]; m[6] += rhs[6]; m[7] += rhs[7]; + m[8] += rhs[8]; m[9] += rhs[9]; m[10]+= rhs[10]; m[11]+= rhs[11]; + m[12]+= rhs[12]; m[13]+= rhs[13]; m[14]+= rhs[14]; m[15]+= rhs[15]; + return *this; +} + + + +inline Matrix4& Matrix4::operator-=(const Matrix4& rhs) +{ + m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3]; + m[4] -= rhs[4]; m[5] -= rhs[5]; m[6] -= rhs[6]; m[7] -= rhs[7]; + m[8] -= rhs[8]; m[9] -= rhs[9]; m[10]-= rhs[10]; m[11]-= rhs[11]; + m[12]-= rhs[12]; m[13]-= rhs[13]; m[14]-= rhs[14]; m[15]-= rhs[15]; + return *this; +} + + + +inline Vector4 Matrix4::operator*(const Vector4& rhs) const +{ + return Vector4(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z + m[12]*rhs.w, + m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z + m[13]*rhs.w, + m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z + m[14]*rhs.w, + m[3]*rhs.x + m[7]*rhs.y + m[11]*rhs.z + m[15]*rhs.w); +} + + + +inline Vector3 Matrix4::operator*(const Vector3& rhs) const +{ + return Vector3(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z, + m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z, + m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z); +} + + + +inline Matrix4 Matrix4::operator*(const Matrix4& n) const +{ + return Matrix4(m[0]*n[0] + m[4]*n[1] + m[8]*n[2] + m[12]*n[3], m[1]*n[0] + m[5]*n[1] + m[9]*n[2] + m[13]*n[3], m[2]*n[0] + m[6]*n[1] + m[10]*n[2] + m[14]*n[3], m[3]*n[0] + m[7]*n[1] + m[11]*n[2] + m[15]*n[3], + m[0]*n[4] + m[4]*n[5] + m[8]*n[6] + m[12]*n[7], m[1]*n[4] + m[5]*n[5] + m[9]*n[6] + m[13]*n[7], m[2]*n[4] + m[6]*n[5] + m[10]*n[6] + m[14]*n[7], m[3]*n[4] + m[7]*n[5] + m[11]*n[6] + m[15]*n[7], + m[0]*n[8] + m[4]*n[9] + m[8]*n[10] + m[12]*n[11], m[1]*n[8] + m[5]*n[9] + m[9]*n[10] + m[13]*n[11], m[2]*n[8] + m[6]*n[9] + m[10]*n[10] + m[14]*n[11], m[3]*n[8] + m[7]*n[9] + m[11]*n[10] + m[15]*n[11], + m[0]*n[12] + m[4]*n[13] + m[8]*n[14] + m[12]*n[15], m[1]*n[12] + m[5]*n[13] + m[9]*n[14] + m[13]*n[15], m[2]*n[12] + m[6]*n[13] + m[10]*n[14] + m[14]*n[15], m[3]*n[12] + m[7]*n[13] + m[11]*n[14] + m[15]*n[15]); +} + + + +inline Matrix4& Matrix4::operator*=(const Matrix4& rhs) +{ + *this = *this * rhs; + return *this; +} + + + +inline bool Matrix4::operator==(const Matrix4& n) const +{ + return (m[0] == n[0]) && (m[1] == n[1]) && (m[2] == n[2]) && (m[3] == n[3]) && + (m[4] == n[4]) && (m[5] == n[5]) && (m[6] == n[6]) && (m[7] == n[7]) && + (m[8] == n[8]) && (m[9] == n[9]) && (m[10]== n[10]) && (m[11]== n[11]) && + (m[12]== n[12]) && (m[13]== n[13]) && (m[14]== n[14]) && (m[15]== n[15]); +} + + + +inline bool Matrix4::operator!=(const Matrix4& n) const +{ + return (m[0] != n[0]) || (m[1] != n[1]) || (m[2] != n[2]) || (m[3] != n[3]) || + (m[4] != n[4]) || (m[5] != n[5]) || (m[6] != n[6]) || (m[7] != n[7]) || + (m[8] != n[8]) || (m[9] != n[9]) || (m[10]!= n[10]) || (m[11]!= n[11]) || + (m[12]!= n[12]) || (m[13]!= n[13]) || (m[14]!= n[14]) || (m[15]!= n[15]); +} + + + +inline float Matrix4::operator[](int index) const +{ + return m[index]; +} + + + +inline float& Matrix4::operator[](int index) +{ + return m[index]; +} + + + +inline Matrix4 operator-(const Matrix4& rhs) +{ + return Matrix4(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8], -rhs[9], -rhs[10], -rhs[11], -rhs[12], -rhs[13], -rhs[14], -rhs[15]); +} + + + +inline Matrix4 operator*(float s, const Matrix4& rhs) +{ + return Matrix4(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8], s*rhs[9], s*rhs[10], s*rhs[11], s*rhs[12], s*rhs[13], s*rhs[14], s*rhs[15]); +} + + + +inline Vector4 operator*(const Vector4& v, const Matrix4& m) +{ + return Vector4(v.x*m[0] + v.y*m[1] + v.z*m[2] + v.w*m[3], v.x*m[4] + v.y*m[5] + v.z*m[6] + v.w*m[7], v.x*m[8] + v.y*m[9] + v.z*m[10] + v.w*m[11], v.x*m[12] + v.y*m[13] + v.z*m[14] + v.w*m[15]); +} + + + +inline Vector3 operator*(const Vector3& v, const Matrix4& m) +{ + return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[4] + v.y*m[5] + v.z*m[6], v.x*m[8] + v.y*m[9] + v.z*m[10]); +} + + + +inline std::ostream& operator<<(std::ostream& os, const Matrix4& m) +{ + os << std::fixed << std::setprecision(5); + os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[8] << " " << std::setw(10) << m[12] << "]\n" + << "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[9] << " " << std::setw(10) << m[13] << "]\n" + << "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[6] << " " << std::setw(10) << m[10] << " " << std::setw(10) << m[14] << "]\n" + << "[" << std::setw(10) << m[3] << " " << std::setw(10) << m[7] << " " << std::setw(10) << m[11] << " " << std::setw(10) << m[15] << "]\n"; + os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield); + return os; +} +// END OF MATRIX4 INLINE ////////////////////////////////////////////////////// +#endif diff --git a/shared/Vectors.h b/shared/Vectors.h new file mode 100644 index 0000000..2efb840 --- /dev/null +++ b/shared/Vectors.h @@ -0,0 +1,530 @@ +/////////////////////////////////////////////////////////////////////////////// +// Vectors.h +// ========= +// 2D/3D/4D vectors +// +// AUTHOR: Song Ho Ahn (song.ahn@gmail.com) +// CREATED: 2007-02-14 +// UPDATED: 2013-01-20 +// +// Copyright (C) 2007-2013 Song Ho Ahn +/////////////////////////////////////////////////////////////////////////////// + + +#ifndef VECTORS_H_DEF +#define VECTORS_H_DEF + +#include <cmath> +#include <iostream> + +/////////////////////////////////////////////////////////////////////////////// +// 2D vector +/////////////////////////////////////////////////////////////////////////////// +struct Vector2 +{ + float x; + float y; + + // ctors + Vector2() : x(0), y(0) {}; + Vector2(float x, float y) : x(x), y(y) {}; + + // utils functions + void set(float x, float y); + float length() const; // + float distance(const Vector2& vec) const; // distance between two vectors + Vector2& normalize(); // + float dot(const Vector2& vec) const; // dot product + bool equal(const Vector2& vec, float e) const; // compare with epsilon + + // operators + Vector2 operator-() const; // unary operator (negate) + Vector2 operator+(const Vector2& rhs) const; // add rhs + Vector2 operator-(const Vector2& rhs) const; // subtract rhs + Vector2& operator+=(const Vector2& rhs); // add rhs and update this object + Vector2& operator-=(const Vector2& rhs); // subtract rhs and update this object + Vector2 operator*(const float scale) const; // scale + Vector2 operator*(const Vector2& rhs) const; // multiply each element + Vector2& operator*=(const float scale); // scale and update this object + Vector2& operator*=(const Vector2& rhs); // multiply each element and update this object + Vector2 operator/(const float scale) const; // inverse scale + Vector2& operator/=(const float scale); // scale and update this object + bool operator==(const Vector2& rhs) const; // exact compare, no epsilon + bool operator!=(const Vector2& rhs) const; // exact compare, no epsilon + bool operator<(const Vector2& rhs) const; // comparison for sort + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Vector2 operator*(const float a, const Vector2 vec); + friend std::ostream& operator<<(std::ostream& os, const Vector2& vec); +}; + + + +/////////////////////////////////////////////////////////////////////////////// +// 3D vector +/////////////////////////////////////////////////////////////////////////////// +struct Vector3 +{ + float x; + float y; + float z; + + // ctors + Vector3() : x(0), y(0), z(0) {}; + Vector3(float x, float y, float z) : x(x), y(y), z(z) {}; + + // utils functions + void set(float x, float y, float z); + float length() const; // + float distance(const Vector3& vec) const; // distance between two vectors + Vector3& normalize(); // + float dot(const Vector3& vec) const; // dot product + Vector3 cross(const Vector3& vec) const; // cross product + bool equal(const Vector3& vec, float e) const; // compare with epsilon + + // operators + Vector3 operator-() const; // unary operator (negate) + Vector3 operator+(const Vector3& rhs) const; // add rhs + Vector3 operator-(const Vector3& rhs) const; // subtract rhs + Vector3& operator+=(const Vector3& rhs); // add rhs and update this object + Vector3& operator-=(const Vector3& rhs); // subtract rhs and update this object + Vector3 operator*(const float scale) const; // scale + Vector3 operator*(const Vector3& rhs) const; // multiplay each element + Vector3& operator*=(const float scale); // scale and update this object + Vector3& operator*=(const Vector3& rhs); // product each element and update this object + Vector3 operator/(const float scale) const; // inverse scale + Vector3& operator/=(const float scale); // scale and update this object + bool operator==(const Vector3& rhs) const; // exact compare, no epsilon + bool operator!=(const Vector3& rhs) const; // exact compare, no epsilon + bool operator<(const Vector3& rhs) const; // comparison for sort + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Vector3 operator*(const float a, const Vector3 vec); + friend std::ostream& operator<<(std::ostream& os, const Vector3& vec); +}; + + + +/////////////////////////////////////////////////////////////////////////////// +// 4D vector +/////////////////////////////////////////////////////////////////////////////// +struct Vector4 +{ + float x; + float y; + float z; + float w; + + // ctors + Vector4() : x(0), y(0), z(0), w(0) {}; + Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {}; + + // utils functions + void set(float x, float y, float z, float w); + float length() const; // + float distance(const Vector4& vec) const; // distance between two vectors + Vector4& normalize(); // + float dot(const Vector4& vec) const; // dot product + bool equal(const Vector4& vec, float e) const; // compare with epsilon + + // operators + Vector4 operator-() const; // unary operator (negate) + Vector4 operator+(const Vector4& rhs) const; // add rhs + Vector4 operator-(const Vector4& rhs) const; // subtract rhs + Vector4& operator+=(const Vector4& rhs); // add rhs and update this object + Vector4& operator-=(const Vector4& rhs); // subtract rhs and update this object + Vector4 operator*(const float scale) const; // scale + Vector4 operator*(const Vector4& rhs) const; // multiply each element + Vector4& operator*=(const float scale); // scale and update this object + Vector4& operator*=(const Vector4& rhs); // multiply each element and update this object + Vector4 operator/(const float scale) const; // inverse scale + Vector4& operator/=(const float scale); // scale and update this object + bool operator==(const Vector4& rhs) const; // exact compare, no epsilon + bool operator!=(const Vector4& rhs) const; // exact compare, no epsilon + bool operator<(const Vector4& rhs) const; // comparison for sort + float operator[](int index) const; // subscript operator v[0], v[1] + float& operator[](int index); // subscript operator v[0], v[1] + + friend Vector4 operator*(const float a, const Vector4 vec); + friend std::ostream& operator<<(std::ostream& os, const Vector4& vec); +}; + + + +// fast math routines from Doom3 SDK +inline float invSqrt(float x) +{ + float xhalf = 0.5f * x; + int i = *(int*)&x; // get bits for floating value + i = 0x5f3759df - (i>>1); // gives initial guess + x = *(float*)&i; // convert bits back to float + x = x * (1.5f - xhalf*x*x); // Newton step + return x; +} + + + +/////////////////////////////////////////////////////////////////////////////// +// inline functions for Vector2 +/////////////////////////////////////////////////////////////////////////////// +inline Vector2 Vector2::operator-() const { + return Vector2(-x, -y); +} + +inline Vector2 Vector2::operator+(const Vector2& rhs) const { + return Vector2(x+rhs.x, y+rhs.y); +} + +inline Vector2 Vector2::operator-(const Vector2& rhs) const { + return Vector2(x-rhs.x, y-rhs.y); +} + +inline Vector2& Vector2::operator+=(const Vector2& rhs) { + x += rhs.x; y += rhs.y; return *this; +} + +inline Vector2& Vector2::operator-=(const Vector2& rhs) { + x -= rhs.x; y -= rhs.y; return *this; +} + +inline Vector2 Vector2::operator*(const float a) const { + return Vector2(x*a, y*a); +} + +inline Vector2 Vector2::operator*(const Vector2& rhs) const { + return Vector2(x*rhs.x, y*rhs.y); +} + +inline Vector2& Vector2::operator*=(const float a) { + x *= a; y *= a; return *this; +} + +inline Vector2& Vector2::operator*=(const Vector2& rhs) { + x *= rhs.x; y *= rhs.y; return *this; +} + +inline Vector2 Vector2::operator/(const float a) const { + return Vector2(x/a, y/a); +} + +inline Vector2& Vector2::operator/=(const float a) { + x /= a; y /= a; return *this; +} + +inline bool Vector2::operator==(const Vector2& rhs) const { + return (x == rhs.x) && (y == rhs.y); +} + +inline bool Vector2::operator!=(const Vector2& rhs) const { + return (x != rhs.x) || (y != rhs.y); +} + +inline bool Vector2::operator<(const Vector2& rhs) const { + if(x < rhs.x) return true; + if(x > rhs.x) return false; + if(y < rhs.y) return true; + if(y > rhs.y) return false; + return false; +} + +inline float Vector2::operator[](int index) const { + return (&x)[index]; +} + +inline float& Vector2::operator[](int index) { + return (&x)[index]; +} + +inline void Vector2::set(float x_, float y_) { + this->x = x_; this->y = y_; +} + +inline float Vector2::length() const { + return sqrtf(x*x + y*y); +} + +inline float Vector2::distance(const Vector2& vec) const { + return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y)); +} + +inline Vector2& Vector2::normalize() { + //@@const float EPSILON = 0.000001f; + float xxyy = x*x + y*y; + //@@if(xxyy < EPSILON) + //@@ return *this; + + //float invLength = invSqrt(xxyy); + float invLength = 1.0f / sqrtf(xxyy); + x *= invLength; + y *= invLength; + return *this; +} + +inline float Vector2::dot(const Vector2& rhs) const { + return (x*rhs.x + y*rhs.y); +} + +inline bool Vector2::equal(const Vector2& rhs, float epsilon) const { + return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon; +} + +inline Vector2 operator*(const float a, const Vector2 vec) { + return Vector2(a*vec.x, a*vec.y); +} + +inline std::ostream& operator<<(std::ostream& os, const Vector2& vec) { + os << "(" << vec.x << ", " << vec.y << ")"; + return os; +} +// END OF VECTOR2 ///////////////////////////////////////////////////////////// + + + + +/////////////////////////////////////////////////////////////////////////////// +// inline functions for Vector3 +/////////////////////////////////////////////////////////////////////////////// +inline Vector3 Vector3::operator-() const { + return Vector3(-x, -y, -z); +} + +inline Vector3 Vector3::operator+(const Vector3& rhs) const { + return Vector3(x+rhs.x, y+rhs.y, z+rhs.z); +} + +inline Vector3 Vector3::operator-(const Vector3& rhs) const { + return Vector3(x-rhs.x, y-rhs.y, z-rhs.z); +} + +inline Vector3& Vector3::operator+=(const Vector3& rhs) { + x += rhs.x; y += rhs.y; z += rhs.z; return *this; +} + +inline Vector3& Vector3::operator-=(const Vector3& rhs) { + x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this; +} + +inline Vector3 Vector3::operator*(const float a) const { + return Vector3(x*a, y*a, z*a); +} + +inline Vector3 Vector3::operator*(const Vector3& rhs) const { + return Vector3(x*rhs.x, y*rhs.y, z*rhs.z); +} + +inline Vector3& Vector3::operator*=(const float a) { + x *= a; y *= a; z *= a; return *this; +} + +inline Vector3& Vector3::operator*=(const Vector3& rhs) { + x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this; +} + +inline Vector3 Vector3::operator/(const float a) const { + return Vector3(x/a, y/a, z/a); +} + +inline Vector3& Vector3::operator/=(const float a) { + x /= a; y /= a; z /= a; return *this; +} + +inline bool Vector3::operator==(const Vector3& rhs) const { + return (x == rhs.x) && (y == rhs.y) && (z == rhs.z); +} + +inline bool Vector3::operator!=(const Vector3& rhs) const { + return (x != rhs.x) || (y != rhs.y) || (z != rhs.z); +} + +inline bool Vector3::operator<(const Vector3& rhs) const { + if(x < rhs.x) return true; + if(x > rhs.x) return false; + if(y < rhs.y) return true; + if(y > rhs.y) return false; + if(z < rhs.z) return true; + if(z > rhs.z) return false; + return false; +} + +inline float Vector3::operator[](int index) const { + return (&x)[index]; +} + +inline float& Vector3::operator[](int index) { + return (&x)[index]; +} + +inline void Vector3::set(float x_, float y_, float z_) { + this->x = x_; this->y = y_; this->z = z_; +} + +inline float Vector3::length() const { + return sqrtf(x*x + y*y + z*z); +} + +inline float Vector3::distance(const Vector3& vec) const { + return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z)); +} + +inline Vector3& Vector3::normalize() { + //@@const float EPSILON = 0.000001f; + float xxyyzz = x*x + y*y + z*z; + //@@if(xxyyzz < EPSILON) + //@@ return *this; // do nothing if it is ~zero vector + + //float invLength = invSqrt(xxyyzz); + float invLength = 1.0f / sqrtf(xxyyzz); + x *= invLength; + y *= invLength; + z *= invLength; + return *this; +} + +inline float Vector3::dot(const Vector3& rhs) const { + return (x*rhs.x + y*rhs.y + z*rhs.z); +} + +inline Vector3 Vector3::cross(const Vector3& rhs) const { + return Vector3(y*rhs.z - z*rhs.y, z*rhs.x - x*rhs.z, x*rhs.y - y*rhs.x); +} + +inline bool Vector3::equal(const Vector3& rhs, float epsilon) const { + return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && fabs(z - rhs.z) < epsilon; +} + +inline Vector3 operator*(const float a, const Vector3 vec) { + return Vector3(a*vec.x, a*vec.y, a*vec.z); +} + +inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) { + os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ")"; + return os; +} +// END OF VECTOR3 ///////////////////////////////////////////////////////////// + + + +/////////////////////////////////////////////////////////////////////////////// +// inline functions for Vector4 +/////////////////////////////////////////////////////////////////////////////// +inline Vector4 Vector4::operator-() const { + return Vector4(-x, -y, -z, -w); +} + +inline Vector4 Vector4::operator+(const Vector4& rhs) const { + return Vector4(x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w); +} + +inline Vector4 Vector4::operator-(const Vector4& rhs) const { + return Vector4(x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w); +} + +inline Vector4& Vector4::operator+=(const Vector4& rhs) { + x += rhs.x; y += rhs.y; z += rhs.z; w += rhs.w; return *this; +} + +inline Vector4& Vector4::operator-=(const Vector4& rhs) { + x -= rhs.x; y -= rhs.y; z -= rhs.z; w -= rhs.w; return *this; +} + +inline Vector4 Vector4::operator*(const float a) const { + return Vector4(x*a, y*a, z*a, w*a); +} + +inline Vector4 Vector4::operator*(const Vector4& rhs) const { + return Vector4(x*rhs.x, y*rhs.y, z*rhs.z, w*rhs.w); +} + +inline Vector4& Vector4::operator*=(const float a) { + x *= a; y *= a; z *= a; w *= a; return *this; +} + +inline Vector4& Vector4::operator*=(const Vector4& rhs) { + x *= rhs.x; y *= rhs.y; z *= rhs.z; w *= rhs.w; return *this; +} + +inline Vector4 Vector4::operator/(const float a) const { + return Vector4(x/a, y/a, z/a, w/a); +} + +inline Vector4& Vector4::operator/=(const float a) { + x /= a; y /= a; z /= a; w /= a; return *this; +} + +inline bool Vector4::operator==(const Vector4& rhs) const { + return (x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w); +} + +inline bool Vector4::operator!=(const Vector4& rhs) const { + return (x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w); +} + +inline bool Vector4::operator<(const Vector4& rhs) const { + if(x < rhs.x) return true; + if(x > rhs.x) return false; + if(y < rhs.y) return true; + if(y > rhs.y) return false; + if(z < rhs.z) return true; + if(z > rhs.z) return false; + if(w < rhs.w) return true; + if(w > rhs.w) return false; + return false; +} + +inline float Vector4::operator[](int index) const { + return (&x)[index]; +} + +inline float& Vector4::operator[](int index) { + return (&x)[index]; +} + +inline void Vector4::set(float x_, float y_, float z_, float w_) { + this->x = x_; this->y = y_; this->z = z_; this->w = w_; +} + +inline float Vector4::length() const { + return sqrtf(x*x + y*y + z*z + w*w); +} + +inline float Vector4::distance(const Vector4& vec) const { + return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z) + (vec.w-w)*(vec.w-w)); +} + +inline Vector4& Vector4::normalize() { + //NOTE: leave w-component untouched + //@@const float EPSILON = 0.000001f; + float xxyyzz = x*x + y*y + z*z; + //@@if(xxyyzz < EPSILON) + //@@ return *this; // do nothing if it is zero vector + + //float invLength = invSqrt(xxyyzz); + float invLength = 1.0f / sqrtf(xxyyzz); + x *= invLength; + y *= invLength; + z *= invLength; + return *this; +} + +inline float Vector4::dot(const Vector4& rhs) const { + return (x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w); +} + +inline bool Vector4::equal(const Vector4& rhs, float epsilon) const { + return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && + fabs(z - rhs.z) < epsilon && fabs(w - rhs.w) < epsilon; +} + +inline Vector4 operator*(const float a, const Vector4 vec) { + return Vector4(a*vec.x, a*vec.y, a*vec.z, a*vec.w); +} + +inline std::ostream& operator<<(std::ostream& os, const Vector4& vec) { + os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w << ")"; + return os; +} +// END OF VECTOR4 ///////////////////////////////////////////////////////////// + +#endif |