aboutsummaryrefslogtreecommitdiff
path: root/shared/Matrices.cpp
blob: 582b2854eb527b4dd264996fc88273b333b86b0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
///////////////////////////////////////////////////////////////////////////////
// Matrice.cpp
// ===========
// NxN Matrix Math classes
//
// The elements of the matrix are stored as column major order.
// | 0 2 |    | 0 3 6 |    |  0  4  8 12 |
// | 1 3 |    | 1 4 7 |    |  1  5  9 13 |
//            | 2 5 8 |    |  2  6 10 14 |
//                         |  3  7 11 15 |
//
//  AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2005-06-24
// UPDATED: 2014-09-21
//
// Copyright (C) 2005 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////

#include <cmath>
#include <algorithm>
#include "Matrices.h"

const float DEG2RAD = 3.141593f / 180;
const float EPSILON = 0.00001f;



///////////////////////////////////////////////////////////////////////////////
// transpose 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::transpose()
{
    std::swap(m[1],  m[2]);
    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// return the determinant of 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix2::getDeterminant()
{
    return m[0] * m[3] - m[1] * m[2];
}



///////////////////////////////////////////////////////////////////////////////
// inverse of 2x2 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::invert()
{
    float determinant = getDeterminant();
    if(fabs(determinant) <= EPSILON)
    {
        return identity();
    }

    float tmp = m[0];   // copy the first element
    float invDeterminant = 1.0f / determinant;
    m[0] =  invDeterminant * m[3];
    m[1] = -invDeterminant * m[1];
    m[2] = -invDeterminant * m[2];
    m[3] =  invDeterminant * tmp;

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// transpose 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::transpose()
{
    std::swap(m[1],  m[3]);
    std::swap(m[2],  m[6]);
    std::swap(m[5],  m[7]);

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// return determinant of 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix3::getDeterminant()
{
    return m[0] * (m[4] * m[8] - m[5] * m[7]) -
           m[1] * (m[3] * m[8] - m[5] * m[6]) +
           m[2] * (m[3] * m[7] - m[4] * m[6]);
}



///////////////////////////////////////////////////////////////////////////////
// inverse 3x3 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::invert()
{
    float determinant, invDeterminant;
    float tmp[9];

    tmp[0] = m[4] * m[8] - m[5] * m[7];
    tmp[1] = m[2] * m[7] - m[1] * m[8];
    tmp[2] = m[1] * m[5] - m[2] * m[4];
    tmp[3] = m[5] * m[6] - m[3] * m[8];
    tmp[4] = m[0] * m[8] - m[2] * m[6];
    tmp[5] = m[2] * m[3] - m[0] * m[5];
    tmp[6] = m[3] * m[7] - m[4] * m[6];
    tmp[7] = m[1] * m[6] - m[0] * m[7];
    tmp[8] = m[0] * m[4] - m[1] * m[3];

    // check determinant if it is 0
    determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6];
    if(fabs(determinant) <= EPSILON)
    {
        return identity(); // cannot inverse, make it idenety matrix
    }

    // divide by the determinant
    invDeterminant = 1.0f / determinant;
    m[0] = invDeterminant * tmp[0];
    m[1] = invDeterminant * tmp[1];
    m[2] = invDeterminant * tmp[2];
    m[3] = invDeterminant * tmp[3];
    m[4] = invDeterminant * tmp[4];
    m[5] = invDeterminant * tmp[5];
    m[6] = invDeterminant * tmp[6];
    m[7] = invDeterminant * tmp[7];
    m[8] = invDeterminant * tmp[8];

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// transpose 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::transpose()
{
    std::swap(m[1],  m[4]);
    std::swap(m[2],  m[8]);
    std::swap(m[3],  m[12]);
    std::swap(m[6],  m[9]);
    std::swap(m[7],  m[13]);
    std::swap(m[11], m[14]);

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// inverse 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invert()
{
    // If the 4th row is [0,0,0,1] then it is affine matrix and
    // it has no projective transformation.
    if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1)
        this->invertAffine();
    else
    {
        this->invertGeneral();
        /*@@ invertProjective() is not optimized (slower than generic one)
        if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON)
            this->invertProjective();   // inverse using matrix partition
        else
            this->invertGeneral();      // generalized inverse
        */
    }

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// compute the inverse of 4x4 Euclidean transformation matrix
//
// Euclidean transformation is translation, rotation, and reflection.
// With Euclidean transform, only the position and orientation of the object
// will be changed. Euclidean transform does not change the shape of an object
// (no scaling). Length and angle are reserved.
//
// Use inverseAffine() if the matrix has scale and shear transformation.
//
// M = [ R | T ]
//     [ --+-- ]    (R denotes 3x3 rotation/reflection matrix)
//     [ 0 | 1 ]    (T denotes 1x3 translation matrix)
//
// y = M*x  ->  y = R*x + T  ->  x = R^-1*(y - T)  ->  x = R^T*y - R^T*T
// (R is orthogonal,  R^-1 = R^T)
//
//  [ R | T ]-1    [ R^T | -R^T * T ]    (R denotes 3x3 rotation matrix)
//  [ --+-- ]   =  [ ----+--------- ]    (T denotes 1x3 translation)
//  [ 0 | 1 ]      [  0  |     1    ]    (R^T denotes R-transpose)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertEuclidean()
{
    // transpose 3x3 rotation matrix part
    // | R^T | 0 |
    // | ----+-- |
    // |  0  | 1 |
    float tmp;
    tmp = m[1];  m[1] = m[4];  m[4] = tmp;
    tmp = m[2];  m[2] = m[8];  m[8] = tmp;
    tmp = m[6];  m[6] = m[9];  m[9] = tmp;

    // compute translation part -R^T * T
    // | 0 | -R^T x |
    // | --+------- |
    // | 0 |   0    |
    float x = m[12];
    float y = m[13];
    float z = m[14];
    m[12] = -(m[0] * x + m[4] * y + m[8] * z);
    m[13] = -(m[1] * x + m[5] * y + m[9] * z);
    m[14] = -(m[2] * x + m[6] * y + m[10]* z);

    // last row should be unchanged (0,0,0,1)

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a 4x4 affine transformation matrix
//
// Affine transformations are generalizations of Euclidean transformations.
// Affine transformation includes translation, rotation, reflection, scaling,
// and shearing. Length and angle are NOT preserved.
// M = [ R | T ]
//     [ --+-- ]    (R denotes 3x3 rotation/scale/shear matrix)
//     [ 0 | 1 ]    (T denotes 1x3 translation matrix)
//
// y = M*x  ->  y = R*x + T  ->  x = R^-1*(y - T)  ->  x = R^-1*y - R^-1*T
//
//  [ R | T ]-1   [ R^-1 | -R^-1 * T ]
//  [ --+-- ]   = [ -----+---------- ]
//  [ 0 | 1 ]     [  0   +     1     ]
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertAffine()
{
    // R^-1
    Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]);
    r.invert();
    m[0] = r[0];  m[1] = r[1];  m[2] = r[2];
    m[4] = r[3];  m[5] = r[4];  m[6] = r[5];
    m[8] = r[6];  m[9] = r[7];  m[10]= r[8];

    // -R^-1 * T
    float x = m[12];
    float y = m[13];
    float z = m[14];
    m[12] = -(r[0] * x + r[3] * y + r[6] * z);
    m[13] = -(r[1] * x + r[4] * y + r[7] * z);
    m[14] = -(r[2] * x + r[5] * y + r[8] * z);

    // last row should be unchanged (0,0,0,1)
    //m[3] = m[7] = m[11] = 0.0f;
    //m[15] = 1.0f;

    return * this;
}



///////////////////////////////////////////////////////////////////////////////
// inverse matrix using matrix partitioning (blockwise inverse)
// It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where
// det(A) != 0. If not, use the generic inverse method
// inverse formula.
// M = [ A | B ]    A, B, C, D are 2x2 matrix blocks
//     [ --+-- ]    det(M) = |A| * |D - ((C * A^-1) * B)|
//     [ C | D ]
//
// M^-1 = [ A' | B' ]   A' = A^-1 - (A^-1 * B) * C'
//        [ ---+--- ]   B' = (A^-1 * B) * -D'
//        [ C' | D' ]   C' = -D' * (C * A^-1)
//                      D' = (D - ((C * A^-1) * B))^-1
//
// NOTE: I wrap with () if it it used more than once.
//       The matrix is invertable even if det(A)=0, so must check det(A) before
//       calling this function, and use invertGeneric() instead.
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertProjective()
{
    // partition
    Matrix2 a(m[0], m[1], m[4], m[5]);
    Matrix2 b(m[8], m[9], m[12], m[13]);
    Matrix2 c(m[2], m[3], m[6], m[7]);
    Matrix2 d(m[10], m[11], m[14], m[15]);

    // pre-compute repeated parts
    a.invert();             // A^-1
    Matrix2 ab = a * b;     // A^-1 * B
    Matrix2 ca = c * a;     // C * A^-1
    Matrix2 cab = ca * b;   // C * A^-1 * B
    Matrix2 dcab = d - cab; // D - C * A^-1 * B

    // check determinant if |D - C * A^-1 * B| = 0
    //NOTE: this function assumes det(A) is already checked. if |A|=0 then,
    //      cannot use this function.
    float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2];
    if(fabs(determinant) <= EPSILON)
    {
        return identity();
    }

    // compute D' and -D'
    Matrix2 d1 = dcab;      //  (D - C * A^-1 * B)
    d1.invert();            //  (D - C * A^-1 * B)^-1
    Matrix2 d2 = -d1;       // -(D - C * A^-1 * B)^-1

    // compute C'
    Matrix2 c1 = d2 * ca;   // -D' * (C * A^-1)

    // compute B'
    Matrix2 b1 = ab * d2;   // (A^-1 * B) * -D'

    // compute A'
    Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C'

    // assemble inverse matrix
    m[0] = a1[0];  m[4] = a1[2]; /*|*/ m[8] = b1[0];  m[12]= b1[2];
    m[1] = a1[1];  m[5] = a1[3]; /*|*/ m[9] = b1[1];  m[13]= b1[3];
    /*-----------------------------+-----------------------------*/
    m[2] = c1[0];  m[6] = c1[2]; /*|*/ m[10]= d1[0];  m[14]= d1[2];
    m[3] = c1[1];  m[7] = c1[3]; /*|*/ m[11]= d1[1];  m[15]= d1[3];

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a general 4x4 matrix using Cramer's Rule
// If cannot find inverse, return indentity matrix
// M^-1 = adj(M) / det(M)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertGeneral()
{
    // get cofactors of minor matrices
    float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]);
    float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]);
    float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]);
    float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);

    // get determinant
    float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3;
    if(fabs(determinant) <= EPSILON)
    {
        return identity();
    }

    // get rest of cofactors for adj(M)
    float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]);
    float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]);
    float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]);
    float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]);

    float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7],  m[13],m[14],m[15]);
    float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7],  m[12],m[14],m[15]);
    float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7],  m[12],m[13],m[15]);
    float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6],  m[12],m[13],m[14]);

    float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7],  m[9], m[10],m[11]);
    float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7],  m[8], m[10],m[11]);
    float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7],  m[8], m[9], m[11]);
    float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6],  m[8], m[9], m[10]);

    // build inverse matrix = adj(M) / det(M)
    // adjugate of M is the transpose of the cofactor matrix of M
    float invDeterminant = 1.0f / determinant;
    m[0] =  invDeterminant * cofactor0;
    m[1] = -invDeterminant * cofactor4;
    m[2] =  invDeterminant * cofactor8;
    m[3] = -invDeterminant * cofactor12;

    m[4] = -invDeterminant * cofactor1;
    m[5] =  invDeterminant * cofactor5;
    m[6] = -invDeterminant * cofactor9;
    m[7] =  invDeterminant * cofactor13;

    m[8] =  invDeterminant * cofactor2;
    m[9] = -invDeterminant * cofactor6;
    m[10]=  invDeterminant * cofactor10;
    m[11]= -invDeterminant * cofactor14;

    m[12]= -invDeterminant * cofactor3;
    m[13]=  invDeterminant * cofactor7;
    m[14]= -invDeterminant * cofactor11;
    m[15]=  invDeterminant * cofactor15;

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// return determinant of 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getDeterminant()
{
    return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) -
           m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) +
           m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) -
           m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);
}



///////////////////////////////////////////////////////////////////////////////
// compute cofactor of 3x3 minor matrix without sign
// input params are 9 elements of the minor matrix
// NOTE: The caller must know its sign.
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getCofactor(float m0, float m1, float m2,
                           float m3, float m4, float m5,
                           float m6, float m7, float m8)
{
    return m0 * (m4 * m8 - m5 * m7) -
           m1 * (m3 * m8 - m5 * m6) +
           m2 * (m3 * m7 - m4 * m6);
}



///////////////////////////////////////////////////////////////////////////////
// translate this matrix by (x, y, z)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::translate(const Vector3& v)
{
    return translate(v.x, v.y, v.z);
}

Matrix4& Matrix4::translate(float x, float y, float z)
{
    m[0] += m[3] * x;   m[4] += m[7] * x;   m[8] += m[11]* x;   m[12]+= m[15]* x;
    m[1] += m[3] * y;   m[5] += m[7] * y;   m[9] += m[11]* y;   m[13]+= m[15]* y;
    m[2] += m[3] * z;   m[6] += m[7] * z;   m[10]+= m[11]* z;   m[14]+= m[15]* z;

    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// uniform scale
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::scale(float s)
{
    return scale(s, s, s);
}

Matrix4& Matrix4::scale(float x, float y, float z)
{
    m[0] *= x;   m[4] *= x;   m[8] *= x;   m[12] *= x;
    m[1] *= y;   m[5] *= y;   m[9] *= y;   m[13] *= y;
    m[2] *= z;   m[6] *= z;   m[10]*= z;   m[14] *= z;
    return *this;
}



///////////////////////////////////////////////////////////////////////////////
// build a rotation matrix with given angle(degree) and rotation axis, then
// multiply it with this object
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::rotate(float angle, const Vector3& axis)
{
    return rotate(angle, axis.x, axis.y, axis.z);
}

Matrix4& Matrix4::rotate(float angle, float x, float y, float z)
{
    float c = cosf(angle * DEG2RAD);    // cosine
    float s = sinf(angle * DEG2RAD);    // sine
    float c1 = 1.0f - c;                // 1 - c
    float m0 = m[0],  m4 = m[4],  m8 = m[8],  m12= m[12],
          m1 = m[1],  m5 = m[5],  m9 = m[9],  m13= m[13],
          m2 = m[2],  m6 = m[6],  m10= m[10], m14= m[14];

    // build rotation matrix
    float r0 = x * x * c1 + c;
    float r1 = x * y * c1 + z * s;
    float r2 = x * z * c1 - y * s;
    float r4 = x * y * c1 - z * s;
    float r5 = y * y * c1 + c;
    float r6 = y * z * c1 + x * s;
    float r8 = x * z * c1 + y * s;
    float r9 = y * z * c1 - x * s;
    float r10= z * z * c1 + c;

    // multiply rotation matrix
    m[0] = r0 * m0 + r4 * m1 + r8 * m2;
    m[1] = r1 * m0 + r5 * m1 + r9 * m2;
    m[2] = r2 * m0 + r6 * m1 + r10* m2;
    m[4] = r0 * m4 + r4 * m5 + r8 * m6;
    m[5] = r1 * m4 + r5 * m5 + r9 * m6;
    m[6] = r2 * m4 + r6 * m5 + r10* m6;
    m[8] = r0 * m8 + r4 * m9 + r8 * m10;
    m[9] = r1 * m8 + r5 * m9 + r9 * m10;
    m[10]= r2 * m8 + r6 * m9 + r10* m10;
    m[12]= r0 * m12+ r4 * m13+ r8 * m14;
    m[13]= r1 * m12+ r5 * m13+ r9 * m14;
    m[14]= r2 * m12+ r6 * m13+ r10* m14;

    return *this;
}

Matrix4& Matrix4::rotateX(float angle)
{
    float c = cosf(angle * DEG2RAD);
    float s = sinf(angle * DEG2RAD);
    float m1 = m[1],  m2 = m[2],
          m5 = m[5],  m6 = m[6],
          m9 = m[9],  m10= m[10],
          m13= m[13], m14= m[14];

    m[1] = m1 * c + m2 *-s;
    m[2] = m1 * s + m2 * c;
    m[5] = m5 * c + m6 *-s;
    m[6] = m5 * s + m6 * c;
    m[9] = m9 * c + m10*-s;
    m[10]= m9 * s + m10* c;
    m[13]= m13* c + m14*-s;
    m[14]= m13* s + m14* c;

    return *this;
}

Matrix4& Matrix4::rotateY(float angle)
{
    float c = cosf(angle * DEG2RAD);
    float s = sinf(angle * DEG2RAD);
    float m0 = m[0],  m2 = m[2],
          m4 = m[4],  m6 = m[6],
          m8 = m[8],  m10= m[10],
          m12= m[12], m14= m[14];

    m[0] = m0 * c + m2 * s;
    m[2] = m0 *-s + m2 * c;
    m[4] = m4 * c + m6 * s;
    m[6] = m4 *-s + m6 * c;
    m[8] = m8 * c + m10* s;
    m[10]= m8 *-s + m10* c;
    m[12]= m12* c + m14* s;
    m[14]= m12*-s + m14* c;

    return *this;
}

Matrix4& Matrix4::rotateZ(float angle)
{
    float c = cosf(angle * DEG2RAD);
    float s = sinf(angle * DEG2RAD);
    float m0 = m[0],  m1 = m[1],
          m4 = m[4],  m5 = m[5],
          m8 = m[8],  m9 = m[9],
          m12= m[12], m13= m[13];

    m[0] = m0 * c + m1 *-s;
    m[1] = m0 * s + m1 * c;
    m[4] = m4 * c + m5 *-s;
    m[5] = m4 * s + m5 * c;
    m[8] = m8 * c + m9 *-s;
    m[9] = m8 * s + m9 * c;
    m[12]= m12* c + m13*-s;
    m[13]= m12* s + m13* c;

    return *this;
}